【題目】在數(shù)學(xué)活動(dòng)課上,小明提出這樣一個(gè)問(wèn)題:∠B=C=90°,EBC的中點(diǎn),DE平分∠ADC,如圖,則下列說(shuō)法正確的有( 。﹤(gè)

(1)AE平分∠DAB;(2)EBA≌△DCE;(3)AB+CD=AD;(4)AEDE;(5)ABCD.

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

【答案】C

【解析】

AD的中點(diǎn)F,連接EF.根據(jù)平行線(xiàn)的性質(zhì)可證得(1)(4)(5),根據(jù)梯形中位線(xiàn)定理可證得(3)正確.根據(jù)全等三角形全等的判定可證得(2)的正誤,即可得解.

解:如圖:取AD的中點(diǎn)F,連接EF.

∵∠B=C=90°,

ABCD;[結(jié)論(5)]

EBC的中點(diǎn),FAD的中點(diǎn),

EFABCD,2EF=AB+CD(梯形中位線(xiàn)定理)①;

∴∠CDE=DEF(兩直線(xiàn)平等,內(nèi)錯(cuò)角相等),

DE平分∠ADC,

∴∠CDE=FDE=DEF,

DF=EF;

FAD的中點(diǎn),∴DF=AF,

AF=DF=EF

由①得AF+DF=AB+CD,即AD=AB+CD;[結(jié)論(3)]

由②得∠FAE=FEA,

ABEF可得∠EAB=FEA,

∴∠FAE=EAB,即EA平分∠DAB;[結(jié)論(1)]

由結(jié)論(1)和DE平分∠ADC,且DCAB,可得∠EDA+DAE=90°,則∠DEA=90°,即AEDE;[結(jié)論(4)].

由以上結(jié)論及三角形全等的判定方法,無(wú)法證明EBA≌△DCE.

正確的結(jié)論有4個(gè).

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)AB、CD相交于點(diǎn)0,OE平分∠BOD,OF平分∠COE.∠BOF=30°,求:(1)∠EOD的度數(shù);(2)∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)零件的主視圖、左視圖、俯視圖如下圖所示(尺寸單位:厘米),求一下這個(gè)零件的體積和表面積(寫(xiě)清計(jì)算過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的是(

A. |a|=﹣a,則 a 定是負(fù)數(shù)

B. 單項(xiàng)式 x3y2z 的系數(shù)為 1,次數(shù)是 6

C. AP=BP,則點(diǎn) P 是線(xiàn)段 AB 的中點(diǎn)

D. 若∠AOC=AOB,則射線(xiàn) OC 是∠AOB 的平分線(xiàn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠A +∠B +∠C +∠D +∠E +∠F等于( )

A. 180° B. 360° C. 540° D. 720°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有以下三角形:三角形三邊之比為2:3:2;②三角形的三邊為3,4,5;③三角形三個(gè)角分別為20°,70°,90°;④三角形三個(gè)角的比為1:2:3.其中不是直角三角形的個(gè)數(shù)是( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖所示,在△ABC中,∠ABC=45°,CD⊥ABD,BE平分∠ABC,且BE⊥AC于點(diǎn)E,與CD相交于點(diǎn)F.HBC邊上的中點(diǎn),連接DHBE相交于點(diǎn)G.

(1)求證:BF=AC;

(2)求證:CE=BF;

(3)請(qǐng)你根據(jù)該題的條件并結(jié)合圖形,自己提出一個(gè)問(wèn)題,并解答或證明你提出的問(wèn)題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】高高的路燈掛在路邊的上方,高傲而明亮,小明拿著一根2米長(zhǎng)的竹竿,想量一量路燈的高度,直接量是不可能的.于是,他走到路燈旁的一個(gè)地方,豎起竹竿(即AE),這時(shí),他量了一下竹竿的影長(zhǎng)(AC)正好是1米,他沿著影子的方向走,向遠(yuǎn)處走出兩根竹竿的長(zhǎng)度(即AB=4米),他又豎起竹竿,這時(shí)竹竿的影長(zhǎng)正好是一根竹竿的長(zhǎng)度(即BD=2米).此時(shí),小明抬頭瞧瞧路燈,若有所思地說(shuō):“噢,我知道路燈有多高了!”同學(xué)們,請(qǐng)你和小明一起解答這個(gè)問(wèn)題:
(1)在圖中作出路燈O的位置,并作OP⊥l于P.
(2)求出路燈O的高度,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】P是⊙O外一點(diǎn),PA、PB分別與⊙O相切于點(diǎn)A、B,點(diǎn)C是劣弧AB上任意一點(diǎn),經(jīng)過(guò)點(diǎn)C作⊙O的切線(xiàn),分別交PA、PB于點(diǎn)D、E.若PA=4,則△PDE的周長(zhǎng)是(  )
A.4
B.8
C.12
D.不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案