【題目】如圖,某商場為了吸引顧客,設立了一個可以自由轉動的轉盤,并規(guī)定:每購買500元商品,就能獲得一次轉動轉盤的機會,如果轉盤停止后,指針上對準500、200、100、50、10的區(qū)域,顧客就可以獲得500元、200元、100元、50元、10元的購物券一張(轉盤等分成20份)。
(1)小華購物450元,他獲得購物券的概率是多少?
(2)小麗購物600元,那么:
① 她獲得50元購物券的概率是多少?
② 她獲得100元以上(包括100元)購物券的概率是多少?
【答案】(1)因為不夠500元,所以不能抽獎,獲獎概率為0.
(2)P(獲得50元購物券)=
(3)P(獲得100元以上)=
【解析】試題分析:(1)由于每購買500元商品,才能獲得一次轉動轉盤的機會,所以小華購物450元,不能獲得轉動轉盤的機會,故獲得購物券的概率為0;(2)①找到50元的份數占總份數的多少即為獲得50元購物券的概率;②找到100元及以上的份數占總份數的多少即為獲得100元以上(包括100元)購物券的概率.
試題解析:(1)∵450<500,
∴小華購物450元,不能獲得轉動轉盤的機會,
∴小華獲得購物券的概率為0;
(2)小麗購物600元,能獲得一次轉動轉盤的機會。
①她獲得50元購物券的概率是=;
②她獲得100元以上(包括100元)購物券的概率是.
科目:初中數學 來源: 題型:
【題目】先閱讀再解答:我們已經知道,根據幾何圖形的面積關系可以說明完全平方公式,實際上還有一些等式也可以用這種方式加以說明,例如:
(2a+b)(a+b)=2a2+3ab+b2,就可以用圖①的面積關系來說明.
(1)根據圖②寫出一個等式: ;
(2)已知等式:(x+p)(x+q)=x2+(p+q)x+pq,請你畫出一個相應的幾何圖形加以說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC>AC,以斜邊AB 所在直線為x軸,以斜邊AB上的高所在直線為y軸,建立直角坐標系,若OA2+OB2= 17, 且線段OA、OB的長度是關于x的一元二次方程x2-mx+2(m-3)=0的兩個根.
(1)求C點的坐標;
(2)以斜邊AB為直徑作圓與y軸交于另一點E,求過A、B、E 三點的拋物線的關系式,并畫出此拋物線的草圖.
(3)在拋物線上是否存在點P,使△ABP與△ABC全等?若存在,求出符合條件的P點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接BP并延長交⊙P于點C,過點C的直線y=2x+b交x軸于點D,且⊙P的半徑為,AB=4.
(1)求點B,P,C的坐標;(2)求證:CD是⊙P的切線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC與Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于點G,過點A作AE∥DB交CB的延長線于點E,過點B作BF∥CA交DA的延長線于點F,AE,BF相交于點H.
(1)圖中有若干對三角形是全等的,請你任選一對進行證明;(不添加任何輔助線)
(2)證明:四邊形AHBG是菱形;
(3)若使四邊形AHBG是正方形,還需在Rt△ABC的邊長之間再添加一個什么條件?請你寫出這個條件.(不必證明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠接到一批服裝加工業(yè)務,若由甲車間獨做,可比規(guī)定時間提前8天完成,甲車間在制作完這批服裝的60%后因另有任務,立即將剩余服裝全部交給乙車間,結果剛好按規(guī)定時間完成.已知甲、乙兩個車間每天分別制作200和120件服裝,求該工廠所接的這批服裝的件數和規(guī)定時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請把下面證明過程補充完整:
已知:如圖,∠ADC=∠ABC,BE、DF分別平行∠ABC、∠ADC,且∠1=∠2.
求證:∠A=∠C.
證明:因為BE、DF分別平分∠ABC、∠ADC,( ).
所以∠1=∠ABC,∠3=∠ADC( ).
因為∠ABC=∠ADC(已知),
所以∠1=∠3( ),
因為∠1=∠2(已知),
所以∠2=∠3( ).
所以 ∥ ( ).
所以∠A+∠ =180°,∠C+∠ =180°( ).
所以∠A=∠C( ).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com