【題目】一個(gè)四位數(shù),記千位數(shù)字與百位數(shù)字之和為x,十位數(shù)字與個(gè)位數(shù)字之和為y,如果x=y,那么稱這個(gè)四位數(shù)為“平衡數(shù)”.

1)最小的“平衡數(shù)”為 ;四位數(shù)A4738之和為最大的“平衡數(shù)”,則A的值為_______;

2)一個(gè)四位“平衡數(shù)”M,它的個(gè)位數(shù)字是千位數(shù)字a3倍,百位數(shù)字b與十位數(shù)字之和為8,求出所有滿足條件的“平衡數(shù)”M的值.

【答案】110015261;(21533,26263719

【解析】

1)根據(jù)平衡數(shù)的定義可知千位上和個(gè)位上的數(shù)字為1,百位上和十位上的數(shù)是0的四位數(shù)是最小的平衡數(shù),四位數(shù)的數(shù)位上的數(shù)全為9時(shí)是最大的平衡數(shù),從而可求出四位數(shù)A;

2)設(shè)這個(gè)平衡數(shù),于是得到d=3a, b+c=8,a+b=c+d求得b=4+a,即得ab 的可能的值,分情況討論即可得到結(jié)論,注意每個(gè)數(shù)位上的數(shù)都是一位整數(shù).

1)千位上和個(gè)位上的數(shù)字為1,百位上和十位上的數(shù)是0的四位數(shù)是最小的平衡數(shù),即1001

四位數(shù)的數(shù)位上的數(shù)全為9時(shí)是最大的平衡數(shù),即9999,

∵四位數(shù)A4738之和為9999

∴四位數(shù)A為:9999-4738=5261;

2)設(shè)這個(gè)平衡數(shù),

根據(jù)題意得,d=3a, b+c=8a+b=c+d,

b=4+a,

ab,cd均為一位整數(shù),

∴當(dāng)a=1時(shí),b=5,c=3d=3,故平衡數(shù)為:1533

當(dāng)a=2時(shí),b=6,c=2d=6,故平衡數(shù)為:2626

當(dāng)a=3時(shí),b=7,c=1d=9,故平衡數(shù)為:3719.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P (x,y),若點(diǎn)Q的坐標(biāo)為(ax+y,x+ay), 其中a為常數(shù),則稱點(diǎn)Q是點(diǎn)P“a級(jí)關(guān)聯(lián)點(diǎn)",例如,點(diǎn)P(1,4)“3級(jí)關(guān)聯(lián)點(diǎn)"Q (3×1+4,1+3×4), Q (7,13)。

(1)已知點(diǎn)A (-26)級(jí)關(guān)聯(lián)點(diǎn)是點(diǎn)A1,點(diǎn)B“2級(jí)關(guān)聯(lián)點(diǎn)B1 (3 3), 求點(diǎn)A1和點(diǎn)B的坐標(biāo):

(2)已知點(diǎn)M (m-1, 2m)“-3級(jí)關(guān)聯(lián)點(diǎn)"M位于坐標(biāo)軸上,求M的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一副直角三角板如圖擺放,等腰直角三角板ABC的斜邊BC與含30°角的直角三角板DBE的直角邊BD長(zhǎng)度相同,且斜邊BCBE在同一直線上,ACBD交于點(diǎn)O,連接CD

求證:CDO是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,用(-1,0)表示A點(diǎn)的位置,用(2,1)表示B點(diǎn)的位置,那么:

(1)畫出直角坐標(biāo)系。

(2)寫出△DEF的三個(gè)頂點(diǎn)的坐標(biāo)。

(3)在圖中表示出點(diǎn)M(6,2),N(4,4)的位置。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰RtABC中,∠BAC90°,ADBC于點(diǎn)D,∠ABC的平分線分別交ACADEF兩點(diǎn),MEF的中點(diǎn),AM的延長(zhǎng)線交BC于點(diǎn)N,連接DM,下列結(jié)論:①AEAF;②DFDN;③ANBF;④ENNC;⑤AENC,其中正確結(jié)論的個(gè)數(shù)是( 。

A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面坐標(biāo)系中,ΔABC是等腰直角三角形,∠ABC=90°,AB=BC,點(diǎn)A坐標(biāo)為(-8,-3),點(diǎn)B坐標(biāo)為(0,-5),ACx軸于點(diǎn)D.

1)求點(diǎn)CD的坐標(biāo);

2)點(diǎn)Mx軸上,當(dāng)ΔAMB的周長(zhǎng)最小時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校興趣小組想測(cè)量一座大樓AB的高度.如圖6,大樓前有一段斜坡BC,已知BC的長(zhǎng)為12米,它的坡度i=1:.在離C點(diǎn)40米的D處,用測(cè)角儀測(cè)得大樓頂端A的仰角為37°,測(cè)角儀DE的高為1.5米,求大樓AB的高度約為多少米?(結(jié)果精確到0.1米)

(參考數(shù)據(jù):sin37°0.60,cos37°0.80,tan37°0.75,1.73.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有菱形OABC,點(diǎn)A的坐標(biāo)為(5,0),對(duì)角線OB、AC相交于點(diǎn)D,雙曲線y=(x>0)經(jīng)過(guò)AB的中點(diǎn)F,交BC于點(diǎn)E,且OBAC=40,有下列四個(gè)結(jié)論:

①雙曲線的解析式為y=(x>0);②直線OE的解析式為y=x;tanCAO=;AC+OB=6;其中正確的結(jié)論有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD,AE分別是△ABC的高和角平分線,

1)若∠ABC=30°,∠ACB=50°,求∠DAE的度數(shù)

2)寫出∠DAE與∠C-B的數(shù)量關(guān)系,并證明你的結(jié)論

查看答案和解析>>

同步練習(xí)冊(cè)答案