【題目】如圖,在矩形ABCD中,點(diǎn)EBC邊上的一點(diǎn),且AEBD,垂足為點(diǎn)F,∠DAE2BAE

1)求證:BFDF13;

2)若四邊形EFDC的面積為11,求CEF的面積.

【答案】(1)詳見(jiàn)解析;(2)2.

【解析】

1)根據(jù)已知條件得到∠DAE60°,∠BAE30°,又AEBD,得到 ,于是得到結(jié)論;

2)根據(jù)已知條件得到BEF∽△BDC,求得∠ABF60°,得到∠FBE30°,求得

,由于BD4BF,得到,根據(jù)三角形的面積公式即可得到結(jié)論.

1)證明:∵四邊形ABCD為矩形,∠DAE2BAE,

∴∠DAE60°,∠BAE30°

又∵AEBD,

,,

BFDF13;

2)解:∵∠FBE=∠CBD,∠BFE=∠DCB,

∴△BEF∽△BDC,

∵∠BAE30°,

∴∠ABF60°,

∴∠FBE30°

,

BD4BF

,

,

S四邊形EFDC11,

SBEF1,

,,

,

SCEF1×22

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小明同學(xué)設(shè)計(jì)的“過(guò)圓外一點(diǎn)作圓的切線”的尺規(guī)作圖的過(guò)程.

已知:如圖1,外的一點(diǎn).

求作:過(guò)點(diǎn)的切線.

作法:如圖2,

①連接

②作線段的垂直平分線,直線;

③以點(diǎn)為圓心,為半徑作圓,交于點(diǎn);

④作直線.

,就是所求作的的切線.

根據(jù)上述作圖過(guò)程,回答問(wèn)題:

1)用直尺和圓規(guī),補(bǔ)全圖2中的圖形;

2)完成下面的證明:

證明:連接,,

∵由作圖可知的直徑,

______)(填依據(jù)),

,

又∵的半徑,

,就是的切線(______)(填依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=(k是常數(shù)).

(1)若該函數(shù)的圖象與x軸有兩個(gè)不同的交點(diǎn),試求k的取值范圍;

(2)若點(diǎn)(1,k)在某反比例函數(shù)圖象上,要使該反比例函數(shù)和二次函數(shù)y=都是y隨x的增大而增大,求k應(yīng)滿足的條件及x的取值范圍;

(3)若拋物線y=與x軸交于A(,0)、B(,0)兩點(diǎn),且,=34,若與y軸不平行的直線y=ax+b經(jīng)過(guò)點(diǎn)P(1,3),且與拋物線交于,)、,)兩點(diǎn),試探究是否為定值,并寫出探究過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+3x+c經(jīng)過(guò)A(﹣1,0),B40)兩點(diǎn),與y軸交于點(diǎn)C

1)求拋物線的解析式;

2)若點(diǎn)P在第一象限的拋物線上,且點(diǎn)P的橫坐標(biāo)為t,過(guò)點(diǎn)Px軸作垂線交直線BC于點(diǎn)Q,設(shè)線段PQ的長(zhǎng)為m,求mt之間的函數(shù)關(guān)系式,并求出m的最大值;

3)在(2)的條件下,拋物線上點(diǎn)D(不與C重合)的縱坐標(biāo)為m的最大值,在x軸上找一點(diǎn)E,使點(diǎn)B、C、D、E為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫出E點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形,,,為邊上任意一點(diǎn),連結(jié),,以為直徑作分別交于點(diǎn),,連結(jié),

1)若點(diǎn)的中點(diǎn),證明:

2)若為等腰三角形時(shí),求的長(zhǎng).

3)作點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)

①當(dāng)點(diǎn)落在線段上時(shí),設(shè)線段,交于點(diǎn),求的面積之比.

②在點(diǎn)的運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)落在四邊形內(nèi)時(shí)(不包括邊界),則的范圍是________(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在菱形ABCD中,∠BAD120°AB4cm.動(dòng)點(diǎn)E在射線BC上勻速運(yùn)動(dòng),其運(yùn)動(dòng)速度為1cm/s,運(yùn)動(dòng)時(shí)間為ts.連接AE,并將線段AE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)120°AF,連接BF

1)試說(shuō)明無(wú)論t為何值,ABF的面積始終為定值,并求出該定值;

2)如圖2,連接EFBD,交于點(diǎn)HBDAE交于點(diǎn)G,當(dāng)t為何值時(shí),HEG為直角三角形?

3)如圖3、當(dāng)FB、D三點(diǎn)共線時(shí),求tanFEB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖1,拋物線軸交于點(diǎn)、,與軸交于點(diǎn),且,

1)求拋物線解析式;

2)如圖2,點(diǎn)是拋物線第一象限上一點(diǎn),連接軸于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,線段長(zhǎng)為,求之間的函數(shù)關(guān)系式;

3)在(2)的條件下,過(guò)點(diǎn)作直線軸,在上取一點(diǎn)(點(diǎn)在第二象限),連接,使,連接并延長(zhǎng)軸于點(diǎn),過(guò)點(diǎn)于點(diǎn),連接、、.若時(shí),求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題背景:如圖1,等腰ABC中,AB=AC,BAC=120°,作ADBC于點(diǎn)D,則DBC的中點(diǎn),BAD=BAC=60°,于是 = =;

遷移應(yīng)用:如圖2,ABCADE都是等腰三角形,BAC=∠DAE=120°,D,E,C三點(diǎn)在同一條直線上,連接BD

求證:ADB≌△AEC

請(qǐng)直接寫出線段AD,BD,CD之間的等量關(guān)系式;

拓展延伸:如圖3,在菱形ABCD中,ABC=120°,在ABC內(nèi)作射線BM,作點(diǎn)C關(guān)于BM的對(duì)稱點(diǎn)E,連接AE并延長(zhǎng)交BM于點(diǎn)F,連接CE,CF

證明CEF是等邊三角形;

AE=5,CE=2,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知是邊長(zhǎng)為的等邊三角形,動(dòng)點(diǎn),同時(shí)從,兩點(diǎn)出發(fā),分別沿勻速運(yùn)動(dòng),其中點(diǎn)運(yùn)動(dòng)的速度是,點(diǎn)運(yùn)動(dòng)的速度是,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),,兩點(diǎn)都停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,解答下列問(wèn)題:

1)如圖①,當(dāng)為何值時(shí),;

2)如圖②,當(dāng)為何值時(shí),為直角三角形;

3)如圖③,作于點(diǎn),連接,當(dāng)為何值時(shí),相似?

查看答案和解析>>

同步練習(xí)冊(cè)答案