【題目】完成下列填空:

已知:如圖,ABCD,B=120°,CA平分∠BCD.求證:∠1=30°.

證明:∵ABCD( ),

∴∠B+BCD= ( ).

∵∠B= ( ),

∴∠BCD= ( ).

又∵CA平分∠BCD( ),

∴∠2= ( ).

ABCD( ),

∴∠1= =30°( ).

【答案】見解析.

【解析】由條件ABCD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得到∠1=2,因此求∠1的度數(shù)可轉(zhuǎn)化為求∠2的度數(shù),而CA平分∠BCD,則應(yīng)求∠BCD的度數(shù).由圖知∠BCD與已知的∠B是直線AB、CD被直線BC所截得的同旁內(nèi)角,由條件ABCD可知它們互補(bǔ).

∵AB∥CD(__已知__),

∴∠B+∠BCD=__180_°__(__兩直線平行,同旁內(nèi)角互補(bǔ)__).

∵∠B=__120_°__(__已知__),

∴∠BCD=__60_°__(__等式的性質(zhì)__).

又∵CA平分∠BCD(__已知__),

∴∠2=__30_°__(__角平分線定義__).

∵AB∥CD(__已知__),

∴∠1=__∠2__=30°(__兩直線平行,內(nèi)錯(cuò)角相等__).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)為(0,3),點(diǎn)B在x軸上
(1)在坐標(biāo)系中求作一點(diǎn)M,使得點(diǎn)M到點(diǎn)A,點(diǎn)B和原點(diǎn)O這三點(diǎn)的距離相等,在圖中保留作圖痕跡,不寫作法;
(2)若函數(shù)y= 的圖象經(jīng)過點(diǎn)M,且sin∠OAB= ,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過點(diǎn)(0,﹣3),且頂點(diǎn)坐標(biāo)為(﹣1,﹣4).
(1)求該二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的圖象與x軸的交點(diǎn)為A、B,與y軸的交點(diǎn)為C,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上三點(diǎn)A,O,B對應(yīng)的數(shù)分別為﹣5,0,1,點(diǎn)M為數(shù)軸上任意一點(diǎn),其對應(yīng)的數(shù)為x.

請回答問題:

(1)A、B兩點(diǎn)間的距離是_____,若點(diǎn)M到點(diǎn)A、點(diǎn)B的距離相等,那么x的值是_____;

(2)若點(diǎn)A先沿著數(shù)軸向右移動(dòng)6個(gè)單位長度,再向左移動(dòng)4個(gè)單位長度后所對應(yīng)的數(shù)字是 ____ ;

(3)當(dāng)x為何值時(shí),點(diǎn)M到點(diǎn)A、點(diǎn)B的距離之和是8;

(4)如果點(diǎn)M以每秒3個(gè)單位長度的速度從點(diǎn)O向左運(yùn)動(dòng)時(shí),點(diǎn)A和點(diǎn)B分別以每秒1個(gè)單位長度和每秒4個(gè)單位長度的速度也向左運(yùn)動(dòng),且三點(diǎn)同時(shí)出發(fā),那么幾秒種后點(diǎn)M運(yùn)動(dòng)到點(diǎn)A、點(diǎn)B之間,且點(diǎn)M到點(diǎn)A、點(diǎn)B的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品公司為指導(dǎo)某種應(yīng)季商品的生產(chǎn)和銷售,在對歷年市場行情和生產(chǎn)情況進(jìn)行調(diào)查基礎(chǔ)上,對今年這種商品的市場售價(jià)和生產(chǎn)成本進(jìn)行了預(yù)測并提供了兩個(gè)方面的信息:如圖(1)(2).

注:兩圖中的每個(gè)實(shí)心黑點(diǎn)所對應(yīng)的縱坐標(biāo)分別指相應(yīng)月份一件商品的售價(jià)和成本,生產(chǎn)成本6月份最高;圖(1)的圖象是線段,圖(2)的圖象是拋物線.
(1)在3月份出售這種商品,一件商品的利潤是多少?
(2)設(shè)t月份出售這種商品,一件商品的成本Q(元),求Q關(guān)于t的函數(shù)解析式.
(3)設(shè)t月份出售這種商品,一件商品的利潤W(元),求W關(guān)于t的函數(shù)解析式.
(4)問哪個(gè)月出售這種商品,一件商品的利潤最大?簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的面積是60,請完成下列問題:

(1)如圖①AD是△ABCBC邊上的中線,則△ABD的面積 _ACD的面積(選填“>”“<”“=”).

(2)如圖②CD,BE分別是△ABCAB,AC邊上的中線求四邊形ADOE的面積可以用如下方法:連接AO,AD=DB得:SADO=SBDO同理:SCEO=SAEO,設(shè)SADO=x,SCEO=y(tǒng),SBDO=x,SAEO=y(tǒng),由題意得:SABESABC=30,SADCSABC=30,可列方程組為: ,通過解這個(gè)方程組可得四邊形ADOE的面積為 .

(3)如圖③,ADDB=13,CEAE=12,請你計(jì)算四邊形ADOE的面積,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段AB

(1)請用尺規(guī)按下列要求作圖:

①延長線段AB到C,使BC=AB,

②延長線段BA到D,使AD=AC(不寫畫法,當(dāng)要保留畫圖痕跡)

(2)請直接回答線段BD與線段AC長度之間的大小關(guān)系

(3)如果AB=2cm,請求出線段BD和CD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形ABCD的頂點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(0,1),點(diǎn)C在第一象限,對角線BD與x軸平行.直線y=x+4與x軸、y軸分別交于點(diǎn)E,F(xiàn).將菱形ABCD沿x軸向左平移k個(gè)單位,當(dāng)點(diǎn)C落在EOF的內(nèi)部時(shí)(不包括三角形的邊),k的值可能是( )

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖2是裝有三個(gè)小輪的手拉車在“爬”樓梯時(shí)的側(cè)面示意圖,定長的輪架桿OA,OB,OC抽象為線段,有OA=OB=OC,且∠AOB=120°,折線NG﹣GH﹣HE﹣EF表示樓梯,GH,EF是水平線,NG,HE是鉛垂線,半徑相等的小輪子⊙A,⊙B與樓梯兩邊都相切,且AO∥GH.
(1)如圖2①,若點(diǎn)H在線段OB時(shí),則 的值是
(2)如果一級樓梯的高度HE=(8 +2)cm,點(diǎn)H到線段OB的距離d滿足條件d≤3cm,那么小輪子半徑r的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案