【題目】一自動(dòng)噴灌設(shè)備的噴流情況如圖所示,設(shè)水管OA在高出地面1.5米的A處有一自動(dòng)旋轉(zhuǎn)的噴水頭,一瞬間流出的水流是拋物線狀,噴頭A與水流最高點(diǎn)B連線與y軸成45°角,水流最高點(diǎn)B比噴頭A高2米.
(1)求水流落地點(diǎn)C到O點(diǎn)的距離;
(2)若水流的水平位移s(米)(拋物線上兩對稱點(diǎn)之間的距離)與水流的運(yùn)動(dòng)時(shí)間(t秒)之間的函數(shù)關(guān)系為t= 0.8s,求共有幾秒鐘,水流高度不低于2米?
【答案】(1)2+;(2)秒 .
【解析】試題分析:(1)作BD⊥y軸于點(diǎn)D,由∠DAB=45°,就可以求出AD=BD=2,就可以求出B的坐標(biāo),設(shè)拋物線的解析式為y=a(x-2)2+3.5,由待定系數(shù)法求出其解析式,把y=0時(shí)代入解析式求出其解即可;
(2)當(dāng)y=2時(shí)代入(1)的解析式求出x的值,再將x的值代入t=0.8x求出t的值即可.
試題解析:(1)作BD⊥y軸于點(diǎn)D,
∴∠ADB=90°,
∵∠DAB=45°,
∴∠ABD=∠DBA=45°,
∴AD=BD=2,
∴B(2,3.5),
∵OA=1.5,
∴A(0,1.5),
設(shè)拋物線的解析式為y=a(x-2)2+3.5,由題意,得
1.5=4a+3.5,
解得:a=-0.5,
∴y=-0.5(x-2)2+3.5,
當(dāng)y=0時(shí),0=-0.5(x-2)2+3.5,
解得:x1=2+,x2=2-(舍去),
∴水流落地點(diǎn)C到O點(diǎn)的距離為(2+)米;
(2)當(dāng)y=2時(shí),
2=-0.5(x-2)2+3.5.
解得:x1=2+ ,x2=2-,
∴水流位移的距離為:2+-(2-)=2,
∴t=0.8×2=秒
即共有秒鐘,水流高度不低于2米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開設(shè)以下體育課外活動(dòng)項(xiàng)目:A.籃球 B.乒乓球C.羽毛球 D.足球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,
請回答下列問題:
(1)這次被調(diào)查的學(xué)生共有多少人?
(2)請你將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;
(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】化簡(1)
(2)
(3)已知互為相反數(shù),是絕對值最小的有理數(shù),求的值.
(4)先化簡,再求值:,其中、滿足.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是等腰直角三角形,,點(diǎn)是的中點(diǎn),延長至點(diǎn),使,連接(如圖①).
(1)求證:≌;
(2)已知點(diǎn)是的中點(diǎn),連接(如圖②).
①求證: ≌;
②如圖③,延長至點(diǎn),使,連接,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中每個(gè)小方格都是邊長為1個(gè)單位的正方形,三個(gè)頂點(diǎn)的坐標(biāo)分別是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先將△ABC向上平移3個(gè)單位長度,再向右平移2個(gè)單位長度,得到A1B1C1
(1)在圖中畫出△A1B1C1;
(2)點(diǎn)A1,B1,C1的坐標(biāo)分別為 、 、 ;
(3)若直線BC上有一點(diǎn)P,使△PAC的面積是△ABC面積的2倍,直接寫出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=x2—1與x軸交于A、B兩點(diǎn),頂點(diǎn)為C.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)P為拋物線上的一點(diǎn),且S△APC=2,求點(diǎn)P的坐標(biāo);
(3)如圖2,P(﹣2,﹣2),直線BD交拋物線于D,交y軸于M,連DP交拋物線于E,連BE交y軸于N,求CM ON的值.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下幾個(gè)圖形是五角星和它的變形.
(1)圖甲是一個(gè)五角星 ABCDE,則∠A+∠B+∠C+∠D+∠E 的度數(shù)為 ;(不必 寫過程)
(2)如圖乙,如果點(diǎn) B 向右移動(dòng)到 AC 上時(shí),則∠A+∠EBD+∠C+∠D+∠E 度數(shù)為 ;(不必寫過程)
(3)如圖丙,點(diǎn) B 向右移動(dòng)到 AC 的另一側(cè)時(shí),(1)的結(jié)論成立嗎?為什么?
(4)如圖丁,點(diǎn) B,E 移動(dòng)到∠CAD 的內(nèi)部時(shí),結(jié)論又如何?(不必寫過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的直徑為10,點(diǎn)A,點(diǎn)B,點(diǎn)C在⊙O上,∠CAB的平分線交⊙O于點(diǎn)D.
(1)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD,CD的長;
(2)如圖②,若∠CAB=60°,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖形中每一小格正方形的邊長為1,已知△ABC
(1)AC的長等于 .(結(jié)果保留根號)
(2)將△ABC向右平移2個(gè)單位得到△A′B′C′,則A點(diǎn)的對應(yīng)點(diǎn)A′的坐標(biāo)是 ;
(3)畫出將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得到△A1B1C1,并寫出A點(diǎn)對應(yīng)點(diǎn)A1的坐標(biāo)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com