已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:
①若a+b+c=0,則b2-4ac>0;
②若方程兩根為-1和2,則2a+c=0;
③若方程ax2+c=0有兩個不相等的實根,則方程ax2+bx+c=0必有兩個不相等的實根;
④若b=2a+c,則方程有兩個不相等的實根.其中正確的有( )
A.①②③
B.①②④
C.②③④
D.①②③④
【答案】分析:①觀察條件,知是當x=1時,有a+b+c=0,因而方程有根.
②把x=-1和2代入方程,建立兩個等式,即可得到2a+c=0.
③方程ax2+c=0有兩個不相等的實根,則△=-4ac>0,左邊加上b2就是方程ax2+bx+c=0的△,由于加上了一個非負數(shù),所以△>0.
④把b=2a+c代入△,就能判斷根的情況.
解答:解:①當x=1時,有若a+b+c=0,即方程有實數(shù)根了,
∴△≥0,故錯誤;
②把x=-1代入方程得到:a-b+c=0 (1)
把x=2代入方程得到:4a+2b+c=0  (2)
把(2)式減去(1)式×2得到:6a+3c=0,
即:2a+c=0,故正確;
③方程ax2+c=0有兩個不相等的實數(shù)根,
則它的△=-4ac>0,
∴b2-4ac>0而方程ax2+bx+c=0的△=b2-4ac>0,
∴必有兩個不相等的實數(shù)根.故正確;
④若b=2a+c則△=b2-4ac=(2a+c)2-4ac=4a2+c2,
∵a≠0,
∴4a2+c2>0故正確.
②③④都正確,故選C.
點評:總結:1、一元二次方程根的情況與判別式△的關系:
(1)△>0?方程有兩個不相等的實數(shù)根;
(2)△=0?方程有兩個相等的實數(shù)根;
(3)△<0?方程沒有實數(shù)根.
2、對于給定的條件要仔細分析,向所求的內容轉化.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)已知一元二次方程x2+ax+a-2=0.
(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;
(2)設a<0,當二次函數(shù)y=x2+ax+a-2的圖象與x軸的兩個交點的距離為
13
時,求出此二次函數(shù)的解析式;
(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為
3
13
2
?若存在求出P點坐標,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知一元二次方程x2+ax+b=0①,x2+bx+a=0②,方程①與方程②有且只有一個公共根,則a與b之間應滿足的關系式為
a+b+1=0
a+b+1=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知一元二次方程x2axa-2=0.

(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;

(2)設a<0,當二次函數(shù)yx2axa-2的圖象與x軸的兩個交點的距離為時,求出此二次函數(shù)的解析式;

(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標,若不存在請說明理由.

【解析】(1)判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號就可以了,(2)根據(jù)二次函數(shù)圖象與x軸的兩個交點的距離公式解答即可.(3)是二次函數(shù)綜合應用問題和三角形的綜合應用

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知一元二次方程x2axa-2=0.
(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;
(2)設a<0,當二次函數(shù)yx2axa-2的圖象與x軸的兩個交點的距離為時,求出此二次函數(shù)的解析式;
(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于AB兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆北京市西城區(qū)九年級一模數(shù)學卷(解析版) 題型:解答題

已知一元二次方程x2axa-2=0.

(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;

(2)設a<0,當二次函數(shù)yx2axa-2的圖象與x軸的兩個交點的距離為時,求出此二次函數(shù)的解析式;

(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標,若不存在請說明理由.

【解析】(1)判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號就可以了,(2)根據(jù)二次函數(shù)圖象與x軸的兩個交點的距離公式解答即可.(3)是二次函數(shù)綜合應用問題和三角形的綜合應用

 

查看答案和解析>>

同步練習冊答案