【題目】如圖所示,點(diǎn)D是弦AB的中點(diǎn),點(diǎn)C在⊙O上,CD經(jīng)過圓心O,則下列結(jié)論中不一定正確的是(

A. CDAB B. OAD =2CBD C. AOD =2BCD D. AC BC

【答案】B

【解析】根據(jù)垂線定理及圓周角定理進(jìn)行解答即可.

解:∵點(diǎn)D是弦AB的中點(diǎn),CD經(jīng)過圓心O,∴∠CD⊥AB,弧AC BC,故A、D正確;

∵弧AC BC,等弧所對的圓心角∠AOD是∠BCD所對圓周角的2倍,∴∠OAD 2CBD不正確;

∵等弧所對的圓心角∠AOD是∠BCD所對圓周角的2倍,∴∠AOD 2BCD正確,

故選B.

“點(diǎn)睛”本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧,等弧所對的圓心角是所對圓周角的2倍是解答此題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,點(diǎn)E、F分別是AD、BC的中點(diǎn),分別連接BE、DF、BD.

(1)求證:△AEB≌△CFD;

(2)若四邊形EBFD是菱形,求∠ABD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB為直角,AB=10,°,半徑為1的動(dòng)圓Q的圓心從點(diǎn)C出發(fā),沿著CB方向以1個(gè)單位長度/秒的速度勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿著BA方向也以1個(gè)單位長度/秒的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t≤5)以P為圓心,PB長為半徑的⊙PAB、BC的另一個(gè)交點(diǎn)分別為E、D,連結(jié)ED、EQ

(1)判斷并證明EDBC的位置關(guān)系,并求當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí)t的值;

(2)當(dāng)⊙PAC相交時(shí),設(shè)CQ,PAC 截得的弦長為,求關(guān)于的函數(shù); 并求當(dāng)⊙Q過點(diǎn)B時(shí)⊙PAC截得的弦長;

(3)若⊙P與⊙Q相交,寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,∠BAD的平分線與BC的延長線交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),DG⊥AE,垂足為G,若DG=1,EF=2 ,則AB的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各式.
(1)( )(4 + )﹣ ;
(2)(a + )÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把方程x2﹣8x+3=0配方成如下的形式,則正確是( )
A.(x+4)2=13
B.(x﹣4)2=19
C.(x﹣4)2=13
D.(x+4)2=19

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,BC =2 AB = 8,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),連接DE.將EDC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn),當(dāng)EDC旋轉(zhuǎn)到A,D,E三點(diǎn)共線時(shí),線段BD的長為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)解方程:
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2bx-3x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C,且其對稱軸lx1,點(diǎn)P是拋物線上B,C之間的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)BC重合).

(1)直接寫出拋物線的解析式;

(2)小唐探究點(diǎn)P的位置時(shí)發(fā)現(xiàn):當(dāng)動(dòng)點(diǎn)N在對稱軸l上時(shí),存在PBNB,且PBNB的關(guān)系,請求出點(diǎn)P的坐標(biāo);

(3)是否存在點(diǎn)P使得四邊形PBAC的面積最大?若存在,請求出四邊形PBAC面積的最大值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案