【題目】如圖,AB是⊙O的直徑,點(diǎn)C為AB上一點(diǎn),作CD⊥AB交⊙O于D,連接AD,將△ACD沿AD翻折至△AC′D.
(1)請(qǐng)你判斷C′D與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)過(guò)點(diǎn)B作BB′⊥C′D′于B′,交⊙O于E,若CD= ,AC=3,求BE的長(zhǎng).
【答案】
(1)解:C′D是⊙O的切線(xiàn),
理由:連接OD,
∵OD=OA,
∴∠OAD=∠ADO,
∵將△ACD沿AD翻折至△AC′D,
∴∠C′DA=∠CDA,
∵CD⊥AB,
∴∠DAC+∠ADC=90°,
∴∠ADO+∠C′DA=90°,
∴OD⊥C′D,
∴C′D是⊙O的切線(xiàn)
(2)解:連接AE,BD,
∵AB是⊙O的直徑,
∴AE⊥BE,AD⊥BD,
∵BB′⊥C′D′,
∴∠C′=∠B′=∠AEB′=90°,
∴四邊形AEB′C′是矩形,
∴AC′=B′E,AE=C′B′,
∵將△ACD沿AD翻折至△AC′D,
∵AC′=AC=3,C′D=CD= ,
∵AC′⊥C′B′,OD⊥C′B′,
∴AC′∥OD∥BB′,
∵AO=BO,
∴C′B′=2C′D=2 ,
∴AE=2 ,
∵DC⊥AB,
∴CD2=ACCB,
∴CB=7,
∴AB=10,
∴BE= =4.
【解析】(1)連接OD,根據(jù)等腰三角形的性質(zhì)得到∠OAD=∠ADO,根據(jù)折疊的性質(zhì)得到∠C′DA=∠CDA,于是得到結(jié)論;
(2)連接AE,BD,由AB是⊙O的直徑,得到AE⊥BE,AD⊥BD,推出四邊形AEB′C′是矩形,得到AC′=B′E,AE=C′B′,根據(jù)折疊的性質(zhì)得到AC′=AC=3,C′D=CD=,根據(jù)平行線(xiàn)等分線(xiàn)段定理得到AO=BO,得到AE的值,根據(jù)射影定理得到CB=7,由勾股定理即可得到BE的長(zhǎng).
【考點(diǎn)精析】認(rèn)真審題,首先需要了解勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2),還要掌握垂徑定理(垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)y=x+k和雙曲線(xiàn)y= (k為正整數(shù))交于A,B兩點(diǎn).
(1)當(dāng)k=1時(shí),求A、B兩點(diǎn)的坐標(biāo);
(2)當(dāng)k=2時(shí),求△AOB的面積;
(3)當(dāng)k=1時(shí),△OAB的面積記為S1 , 當(dāng)k=2時(shí),△OAB的面積記為S2 , …,依此類(lèi)推,當(dāng)k=n時(shí),△OAB的面積記為Sn , 若S1+S2+…+Sn= ,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,下列結(jié)論:①一次函數(shù)解析式為y=﹣2x+8;②AD=BC;③kx+b﹣ <0的解集為0<x<1或x>3;④△AOB的面積是8,其中正確結(jié)論的個(gè)數(shù)是( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,真命題有( )
①直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短;
②三角形的一個(gè)外角大于任何一個(gè)內(nèi)角;
③如果∠1和∠2是對(duì)頂角,那么;
④如果一條直線(xiàn)和兩條直線(xiàn)中的一條垂直,那么這條直線(xiàn)也和另一條垂直.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,過(guò)點(diǎn)A引射線(xiàn)AH,交邊CD于點(diǎn)H(點(diǎn)H與點(diǎn)D不重合).通過(guò)翻折,使點(diǎn)B落在射線(xiàn)AH上的點(diǎn)G處,折痕AE交BC于E,延長(zhǎng)EG交CD于F.
(感知)(1)如圖①,當(dāng)點(diǎn)H與點(diǎn)C重合時(shí),猜想FG與FD的數(shù)量關(guān)系,并說(shuō)明理由.
(探究)(2)如圖②,當(dāng)點(diǎn)H為邊CD上任意一點(diǎn)時(shí),(1)中結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由.
(應(yīng)用)(3)在圖②中,當(dāng)DF=3,CE=5時(shí),直接利用探究的結(jié)論,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】大于1的正整數(shù)m的三次冪可“分裂”成若干個(gè)連續(xù)奇數(shù)的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一個(gè)奇數(shù)是2015,則m的值是( )
A.43B.44C.45D.46
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,點(diǎn)E,F(xiàn)分別是AB,BC邊的中點(diǎn),連接AF,CE交于點(diǎn)M,連接BM并延長(zhǎng)交CD于點(diǎn)N,連接DE交AF于點(diǎn)P,則結(jié)論:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE= :3;⑤S△EPM= S梯形ABCD , 正確的個(gè)數(shù)有( )
A.5個(gè)
B.4個(gè)
C.3個(gè)
D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)C(﹣3,0),點(diǎn)A,B分別在x軸,y軸的正半軸上,且滿(mǎn)足 +|OA﹣1|=0
(1)求點(diǎn)A,點(diǎn)B的坐標(biāo).
(2)若點(diǎn)P從C點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿射線(xiàn)CB運(yùn)動(dòng),連結(jié)AP.設(shè)△ABP的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求S與t的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍.
(3)在(2)的條件下,是否存在點(diǎn)P,使以點(diǎn)A,B,P為頂點(diǎn)的三角形與△AOB相似?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家具商場(chǎng)計(jì)劃購(gòu)進(jìn)某種餐桌、餐椅進(jìn)行銷(xiāo)售,有關(guān)信息如下表:
原進(jìn)價(jià)元張 | 零售價(jià)元張 | |
餐桌 | a | 270 |
餐椅 | b | 70 |
若購(gòu)進(jìn)4張餐桌19張餐椅需要1360元;若購(gòu)進(jìn)6張餐桌26張餐椅需要1940元.
求表中a,b的值;
今年年初由于原材料價(jià)格上漲,每張餐桌的進(jìn)價(jià)上漲了10元,每張餐椅的進(jìn)價(jià)上漲了,商場(chǎng)決定購(gòu)進(jìn)餐桌30張,餐椅170張進(jìn)行銷(xiāo)售,全部售出后,要求利潤(rùn)不低于7380元,求m的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com