【題目】如圖,在中,,,,點(diǎn)上一動(dòng)點(diǎn),,.無論的位置如何變化,線段的最小值為(

A. B. C. D.

【答案】B

【解析】

當(dāng)AP⊥BC時(shí),線段DE的值最小,利用四點(diǎn)共圓的判定可得A、E、P、D四點(diǎn)共圓且直徑為AP得∠AED=∠C=45°,有一公共角,根據(jù)兩角對(duì)應(yīng)相等兩三角形相似得△AED△ACB則AD=2x,表示出AE和AC的長(zhǎng),求出AE與AC的比代入比例式中可求出DE的值

解:當(dāng)AP⊥BC時(shí)線段DE的值最小

如圖1,

∵PE⊥AB,PD⊥AC,

∴∠AEP=∠ADP=90°,

∴∠AEP+∠ADP=180°,即A、E、P、D四點(diǎn)共圓且直徑為AP

Rt△PDC中,∠C=45°,

△PDC是等腰直角三角形,∠APD=45°,

△APD也是等腰直角三角形,∠PAD=45°,

∴∠PED=∠PAD=45°,

∴∠AED=45°,

∴∠AED=∠C=45°,

∵∠EAD=∠CAB,

∴△AED∽△ACB,

,

設(shè)AD=2x,則PD=DC=2x,AP=2x,

如圖2

取AP的中點(diǎn)O連接EO則AO=OE=OP=x

∵∠EAP=∠BAC-∠PAD=60°-45°=15°,

∴∠EOP=2∠EAO=30°

過E作EM⊥AP于M則EM=x

cos30°=,

∴OM==x,

∴AM=x,

由勾股定理得:AE=,

=,

∴ED=

B選項(xiàng)是正確的

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形中,對(duì)角線交于,過點(diǎn)作,垂足為點(diǎn),若,,則_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn) B、O分別落在點(diǎn) B1、C1 處,點(diǎn)B1x軸上,再將△AB1C1 繞點(diǎn) B1 順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2 繞點(diǎn)C2 順時(shí)針旋轉(zhuǎn)到△A2B2C2 的位置點(diǎn) A2 在x軸上,依次進(jìn)行下去….若點(diǎn) A(,0),B(0,4),則點(diǎn) B2016 的橫坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們?cè)趯W(xué)完平移、軸對(duì)稱、旋轉(zhuǎn)三種圖形的變化后,可以進(jìn)行進(jìn)一步研究,請(qǐng)根據(jù)示例圖形,完成下表.

圖形的變化

示例圖形

與對(duì)應(yīng)線段有關(guān)的結(jié)論

與對(duì)應(yīng)點(diǎn)有關(guān)的結(jié)論

平移

1__________

軸對(duì)稱

2__________

3__________

旋轉(zhuǎn)

;對(duì)應(yīng)線段所在的直線相交所成的角與旋轉(zhuǎn)角相等或互補(bǔ)

4__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】石獅泰禾某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為80元,銷售價(jià)為120元時(shí),每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷售量,增加利潤(rùn),經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),如果每件童裝降價(jià)1元,那么平均可多售出2件.

(1)設(shè)每件童裝降價(jià)x元時(shí),每天可銷售______ 件,每件盈利______ 元;(用x的代數(shù)式表示)

(2)每件童裝降價(jià)多少元時(shí),平均每天贏利1200元.

(3)要想平均每天贏利2000元,可能嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為美化校園,準(zhǔn)備在長(zhǎng)35米,寬20米的長(zhǎng)方形場(chǎng)地上,修建若干條寬度相同的道路,余下部分作草坪,并請(qǐng)全校學(xué)生參與方案設(shè)計(jì),現(xiàn)有3位同學(xué)各設(shè)計(jì)了一種方案,圖紙分別如圖l、圖2和圖3所示(陰影部分為草坪).

請(qǐng)你根據(jù)這一問題,在每種方案中都只列出方程不解.

①甲方案設(shè)計(jì)圖紙為圖l,設(shè)計(jì)草坪的總面積為600平方米.

②乙方案設(shè)計(jì)圖紙為圖2,設(shè)計(jì)草坪的總面積為600平方米.

③丙方案設(shè)計(jì)圖紙為圖3,設(shè)計(jì)草坪的總面積為540平方米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知正方形ABCD的對(duì)角線ACBD相交于點(diǎn)O,EAC上一點(diǎn),連接EB,過點(diǎn)AAM⊥BE,垂足為M,AMBD于點(diǎn)F

(1)求證:OEOF

(2)如圖(2),若點(diǎn)EAC的延長(zhǎng)線上,AM⊥BE于點(diǎn)M,交DB的延長(zhǎng)線于點(diǎn)F,其他條件不變,則結(jié)論“OEOF”還成立嗎?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富少年兒童的業(yè)余生活,某社區(qū)要在如圖所示AB所在的直線建一圖書室,本社區(qū)有兩所學(xué)校所在的位置在點(diǎn)C和點(diǎn)D處,CAABA,DBABB,已知AB=25km,CA=15km,DB=10km,試問:圖書室E應(yīng)該建在距點(diǎn)A多少km處,才能使它到兩所學(xué)校的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖△ABC中,AB=4,BC=8,DBC邊上的一點(diǎn),BD=2.

(1)求證:△ABD∽△CBA;

(2)DE∥ABAC于點(diǎn)E,請(qǐng)你補(bǔ)全圖形,再找出一個(gè)和△ABD相似的三角形,并計(jì)算DE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案