如圖所示,已知在直角梯形OABC中,ABOC,BC⊥x軸于點C,A(1,1)、B(3,1).動點P從O點出發(fā),沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂直于直線OA,垂足為Q.設P點移動的時間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點的拋物線解析式;
(2)求S與t的函數(shù)關系式;
(3)在運動過程中,是否存在某一時刻t,使得以C、P、Q為頂點的三角形與△OAB相似?若存在,求出t的值;若不存在,請說明理由.
(4)將△OPQ繞著點P順時針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.
(1)設拋物線解析式為y=ax2+bx(a≠0),將A.B點坐標代入得出:
1=a+b
1=9a+3b

解得:
a=-
1
3
b=
4
3
,
故經(jīng)過O、A、B三點的拋物線解析式為:y=-
1
3
x2+
4
3
x.

(2)①當0<t≤2時,重疊部分為△OPQ,過點A作AD⊥x軸于點D,
如圖1.
在Rt△AOD中,AD=OD=1,∠AOD=45°.
在Rt△OPQ中,OP=t,∠OPQ=∠QOP=45°.
∴OQ=PQ=
2
2
t.
∴S=S△OPQ=
1
2
OQ•PQ=
1
2
×
2
2
2
2
t=
1
4
t2(0<t≤2);
②當2<t≤3時,設PQ交AB于點E,重疊部分為梯形AOPE,
作EF⊥x軸于點F,如圖2.∵∠OPQ=∠QOP=45°
∴四邊形AOPE是等腰梯形∴AE=DF=t-2.
∴S=S梯形AOPE=
1
2
(AE+OP)•AD=
1
2
(t-2+t)×1
=t-1(2<t≤3);
③當3<t<4時,設PQ交AB于點E,交BC于點F,
重疊部分為五邊形AOCFE,如圖3.
∵B(3,1),OP=t,∴PC=CF=t-3.
∵△PFC和△BEF都是等腰直角三角形
∴BE=BF=1-(t-3)=4-t
∴S=S五邊形AOCFE=S梯形OABC-S△BEF,
=
1
2
(2+3)×1-
1
2
(4-t)2
=-
1
2
t2+4t-
11
2
(3<t<4);

(3)連接QC,OB,
∵ABOC,
∴∠BAO+∠AOC=180°,
∵∠AOC=45°,∠OQP=90°,
∴∠QPO=45°,
∵∠QPO+∠QPC=180°,
∴∠BAO=∠QPC,
只要
PC
PQ
=
AO
AB
或者
PC
PQ
=
AB
AO
即可得出以C、P、Q為頂點的三角形與△OAB相似,
得出:3-t=
2
2
×
2
2
t或3-t=
2
×
2
2
t
解得:t=2或t=
3
2


(4)存在,t1=1,t2=2.
將△OPQ繞著點P順時針旋轉(zhuǎn)90°,此時Q(t+
t
2
,
t
2
),O(t,t)
①當點Q在拋物線上時,
t
2
=-
1
3
×(t+
t
2
2+
4
3
×(t+
t
2
),
解得t=2;
②當點O在拋物線上時,t=-
1
3
t2+
4
3
t,
解得:t=1.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c的頂點為A(3,-3),與x軸的一個交點為B(1,0).
(1)求拋物線的解析式.
(2)P是y軸上一個動點,求使P到A、B兩點的距離之和最小的點P0的坐標.
(3)設拋物線與x軸的另一個交點為C.在拋物線上是否存在點M,使得△MBC的面積等于以點A、P0、B、C為頂點的四邊形面積的三分之一?若存在,請求出所有符合條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中,O是原點,A、B、C三點的坐標分別為A(18,0),B(18,6),C(8,6),四邊形OABC是梯形,點P、Q同時從原點出發(fā),分別做勻速運動,其中點P沿OA向終點A運動,速度為每秒1個單位,點Q沿OC、CB向終點B運動,當這兩點有一點到達自己的終點時,另一點也停止運動.
(1)求出直線OC的解析式及經(jīng)過O、A、C三點的拋物線的解析式.
(2)試在(1)中的拋物線上找一點D,使得以O、A、D為頂點的三角形與△AOC全等,請直接寫出點D的坐標.
(3)設從出發(fā)起,運動了t秒.如果點Q的速度為每秒2個單位,試寫出點Q的坐標,并寫出此時t的取值范圍.
(4)設從出發(fā)起,運動了t秒.當P、Q兩點運動的路程之和恰好等于梯形OABC的周長的一半,這時,直線PQ能否把梯形的面積也分成相等的兩部分?如有可能,請求出t的值;如不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=-
3
4
x2+
9
4
x+3與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C.
(1)求A、B、C三點的坐標;
(2)求直線BC的函數(shù)解析式;
(3)點P是直線BC上的動點,若△POB為等腰三角形,請寫出此時點P的坐標.(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,Rt△AOB的兩直角邊OA、OB的長分別是1和3,將△AOB繞O點按逆時針方向旋轉(zhuǎn)90°,至△DOC的位置.
(1)求過C、B、A三點的二次函數(shù)的解析式;
(2)若(1)中拋物線的頂點是M,判定△MDC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCO是矩形,點A(3,0),B(3,4),動點M、N分別從點O、B出發(fā),以每秒1個單位的速度運動,其中點M沿OA向終點A運動,點N沿BC向終點C運動.過點N作NPOC,交AC于點P,連接MP,已知動點運動了x秒,△MPA的面積為S.
(1)求點P的坐標.(用含x的代數(shù)式表示)
(2)寫出S關于x的函數(shù)關系式,并求出S的最大值.
(3)當△APM與△ACO相似時,求出點P的坐標.
(4)△PMA能否成為等腰三角形?如能,直接寫出所有點P的坐標;如不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在同一直角坐標系內(nèi),如果x軸與一次函數(shù)y=kx+4的圖象以及分別過C(1,0)、D(4,0)兩點且平行于y軸的兩條直線所圍成的圖形ABDC的面積為7.
(1)求k的值;
(2)求過F、C、D三點的拋物線的解析式;
(3)線段CD上的一個動點P從點D出發(fā),以1單位/秒的速度沿DC的方向移動(點P不重合于點C),過P點作直線PQ⊥CD交EF于Q.當P從點D出發(fā)t秒后,求四邊形PQFC的面積S與t之間的函數(shù)關系式,并確定t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線y=ax2+bx+c交x軸于A、B兩點,交y軸于點C,已知拋物線的對稱軸為x=1,B(3,0),C(0,-3),
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)在拋物線對稱軸上是否存在一點P,使點P到B、C兩點距離之差最大?若存在,求出P點坐標;若不存在,請說明理由;
(3)平行于x軸的一條直線交拋物線于M、N兩點,若以MN為直徑的圓恰好與x軸相切,求此圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在矩形ABCD中,點E是AD邊上一點,連接BE,且∠ABE=30°,BE=DE,連接BD.點P從點E出發(fā)沿射線ED運動,過點P作PQBD交直線BE于點Q.
(1)當點P在線段ED上時(如圖1),求證:BE=PD+
3
3
PQ;
(2)若BC=6,設PQ長為x,以P、Q、D三點為頂點所構(gòu)成的三角形面積為y,求y與x的函數(shù)關系式(不要求寫出自變量x的取值范圍);
(3)在②的條件下,當點P運動到線段ED的中點時,連接QC,過點P作PF⊥QC,垂足為F,PF交對角線BD于點G(如圖2),求線段PG的長.

查看答案和解析>>

同步練習冊答案