【題目】有兩桶水,甲桶裝有升水,乙桶中的水比甲桶中的水多3升.現(xiàn)將甲桶中倒一半到乙桶中,然后再將此時乙桶中總水量的倒給甲桶,假定桶足夠大,水不會溢岀.我們將上述兩個步驟稱為一次操作,進行重復操作,則( )
A. 每操作一次,甲桶中的水量都會減小,最后甲桶中的水會全部倒入乙桶
B. 每操作一次,甲桶中的水量都會減小,但永遠倒不完
C. 每操作一次,甲桶中的水量都會增加,反復操作,最后甲桶中的水會比乙桶多
D. 每操作一次,甲桶中的水量都會增加,但永遠比乙桶中的水量要少
科目:初中數(shù)學 來源: 題型:
【題目】點O為直線AB上一點,過點O作射線OC,使∠BOC=65°,將一直角三角板的直角頂點放在點O處.
(1)如圖①,將三角板MON的一邊ON與射線OB重合時,則∠MOC= ;
(2)如圖②,將三角板MON繞點O逆時針旋轉(zhuǎn)一定角度,此時OC是∠MOB的角平分線,求旋轉(zhuǎn)角∠BON和∠CON的度數(shù);
(3)將三角板MON繞點O逆時針旋轉(zhuǎn)至圖③時,∠NOC=∠AOM,求∠NOB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某單位750名職工積極參加向貧困地區(qū)學校捐書活動,為了解職工的捐數(shù)量,采用隨機抽樣的方法抽取30名職工作為樣本,對他們的捐書量進行統(tǒng)計,統(tǒng)計結(jié)果共有4本、5本、6本、7本、8本五類,分別用A、B、C、D、E表示,根據(jù)統(tǒng)計數(shù)據(jù)繪制成了如圖所示的不完整的條形統(tǒng)計圖,由圖中給出的信息解答下列問題:
(1)補全條形統(tǒng)計圖;
(2)求這30名職工捐書本數(shù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)估計該單位750名職工共捐書多少本?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,2005—2017年全國科學研究與開發(fā)機構(gòu)數(shù)量及地方屬科學研究與開發(fā)機構(gòu)數(shù)量的統(tǒng)計圖中,根據(jù)圖中所給信息,2014年中央屬科學研究與開發(fā)機構(gòu)數(shù)量是()
(注:全國科學研究與開發(fā)機構(gòu)數(shù)量=中央屬科學研究與開發(fā)機構(gòu)數(shù)量+地方屬科學研究與開發(fā)機構(gòu)數(shù)量)
A. 687B. 711C. 720D. 694
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某跳水隊為了解運動員的年齡情況,作了一次年齡調(diào)查,根據(jù)跳水運動員的年齡(單位:歲),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:
(1)本次接受調(diào)查的跳水運動員人數(shù)為 ,圖①中的值為 ;
(2)求統(tǒng)計的這組跳水運動員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用紙復印文件,在甲復印店不管一次復印多少頁,每頁收費0.1元.在乙復印店復印同樣的文件,一次復印頁數(shù)不超過20時,每頁收費0.12元;一次復印頁數(shù)超過20時,超過部分每頁收費0.09元.
設(shè)在同一家復印店一次復印文件的頁數(shù)為(為非負整數(shù)).
(1)根據(jù)題意,填寫下表:
一次復印頁數(shù)(頁) | 5 | 10 | 20 | 30 | … |
甲復印店收費(元) | 2 | … | |||
乙復印店收費(元) | … |
(2)設(shè)在甲復印店復印收費元,在乙復印店復印收費元,分別寫出關(guān)于的函數(shù)關(guān)系式;
(3)當時,顧客在哪家復印店復印花費少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=x2﹣x﹣與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,對稱軸與x軸交于點D,點E(4,n)在拋物線上.
(1)求直線AE的解析式;
(2)點P為直線CE下方拋物線上的一點,連接PC,PE.當△PCE的面積最大時,求P點坐標?
(3)點G是線段CE的中點,將拋物線y=x2﹣x﹣沿x軸正方向平移得到新拋物線y′,y′經(jīng)過點D,y′的頂點為點F.在新拋物線y′的對稱軸上,是否存在點Q,使得△FGQ為等腰三角形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在正方形ABCD中,點E與點F分別在線段AC、BC上,且四邊形DEFG是正方形.
(1)試探究線段AE與CG的關(guān)系,并說明理由.
(2)如圖②若將條件中的四邊形ABCD與四邊形DEFG由正方形改為矩形,AB=3,BC=4.
①線段AE、CG在(1)中的關(guān)系仍然成立嗎?若成立,請證明,若不成立,請寫出你認為正確的關(guān)系,并說明理由.
②當△CDE為等腰三角形時,求CG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數(shù)有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com