【題目】如圖,正方形的邊,在坐標(biāo)軸上,點的坐標(biāo)為,點從點出發(fā),以每秒1個單位長度的速度沿軸向點運動;點從點同時出發(fā),以相同的速度沿軸的正方向運動,規(guī)定點到達點時,點停止運動,點也停止運動.連接,過點作的垂線,與過點平行于軸的直線相交于點D,與軸交于點,連接,設(shè)點運動的時間為.
(1)求的度數(shù)及點的坐標(biāo)(用表示).
(2)當(dāng)為何值時,為等腰三角形?
(3)探索周長是否隨時間的變化而變化.若變化,說明理由;若不變,試求出這個定值.
【答案】(1)(2)當(dāng)為4秒或秒時,為等腰三角形(3)周長是定值,該定值為8
【解析】
(1)易證△BAP≌△PQD,從而得到DQ=AP=t,從而可以求出∠PBD的度數(shù)和點D的坐標(biāo).
(2)由于∠EBP=45°,故圖1是以正方形為背景的一個基本圖形,容易得到EP=AP+CE.由于△PBE底邊不定,故分三種情況討論,借助于三角形全等及勾股定理進行求解,然后結(jié)合條件進行取舍,最終確定符合要求的t值.
(3)由(2)已證的結(jié)論EP=AP+CE很容易得到△POE周長等于AO+CO=8,從而解決問題.
(1)
如圖①.由題可得,.
四邊形是正方形,
,
.
,.
.
,,.
在和中,
.,.
,,.
,.點坐標(biāo)為.
(2)①若,則..
,.
點與點重合.
點與點重合.與條件“軸”矛盾,
這種情況應(yīng)舍去.
②若,則..
.
在和中,
≌.,..
點與點重合().點與點重合().
點,.此時.
③若,
在和中,
.
.,..
,.
延長到點,使得,連接,如圖②所示.
在和中,
.,.
,,.
..
在和中,
.
..
.
,解得,
當(dāng)為4秒或秒時,為等腰三角形.
(3),
.
周長是定值,該定值為8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組
請結(jié)合題意,完成本題的解答:
(Ⅰ)解不等式①,得______;
(Ⅱ)解不等式②,得______;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:
(Ⅳ)原不等式組的解集為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以矩形的頂點為坐標(biāo)原點建立平面直角坐標(biāo)系,使點、分別在、軸的正半軸上,雙曲線的圖象經(jīng)過的中點,且與交于點,過邊上一點,把沿直線翻折,使點落在矩形內(nèi)部的一點處,且,若點的坐標(biāo)為(2,4),則的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點,點在軸上,以點為直角頂點作等腰直角..當(dāng)點落在某函數(shù)的圖象上時,稱點為該函數(shù)的“懸垂點”,為該函數(shù)的“懸垂等腰直角三角形”.
(1)若點是函數(shù)的懸垂點,直接寫出點的橫坐標(biāo)為________.
(2)若反比例函數(shù)的懸垂等腰直角三角形面積是,求的值.
(3)對于函數(shù),當(dāng)時,該函數(shù)的懸垂點只有一個,求的取值范圍.
(4)若函數(shù)的懸垂等腰直角的面積范圍為,且點在第一象限,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內(nèi)的一個動點,且點P的橫坐標(biāo)為t.
(1)求拋物線的表達式;
(2)設(shè)拋物線的對稱軸為l,l與x軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
(3)如圖2,連接BC,PB,PC,設(shè)△PBC的面積為S.
①求S關(guān)于t的函數(shù)表達式;
②求P點到直線BC的距離的最大值,并求出此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關(guān)系;折線OBCDA表示轎車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關(guān)系.請根據(jù)圖象解答下列問題:
(1)當(dāng)轎車剛到乙地時,此時貨車距離乙地 千米;
(2)當(dāng)轎車與貨車相遇時,求此時x的值;
(3)在兩車行駛過程中,當(dāng)轎車與貨車相距20千米時,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰有一塊含有30°角的直角三角板,他想只利用量角器來測量較短直角邊的長度,于是他采用如圖的方法,小聰發(fā)現(xiàn)點A處的三角板讀數(shù)為12cm,點B處的量角器的讀數(shù)為74°和106°,由此可知三角板的較短直角邊的長度為 cm.(參考數(shù)據(jù):tan37°=0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一張扇形紙片OAB,∠AOB=120°,OA=6,將這張扇形紙片折疊,使點A與點O重合,折痕為CD,則圖中未重疊部分(即陰影部分)的面積為( )
A.9B.12π﹣9C.D.6π﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①、圖②均是4×4的正方形網(wǎng)格,每個小正方形的頂點稱為格點,四邊形ABCD的頂點均在格點上,僅用無刻度直尺,分別按下列要求畫圖.
(1)在圖①中的線段CD上找到一點E,連結(jié)AE,使得AE將四邊形ABCD的面積分成1:2兩部分.
(2)在圖②中的四邊形ABCD外部作一條直線l,使得直線l上任意一點與點A、B構(gòu)成三角形的面積是四邊形ABCD面積的.(保留作圖痕跡)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com