【題目】如圖,ABCD中,點O是AC與BD的交點,過點O的直線與BA、DC的延
長線分別交于點E、F.
(1)求證:△AOE≌△COF;
(2)請連接EC、AF,則EF與AC滿足什么條件時,四邊形AECF是矩形,并說明理由.
【答案】解:(1)證明:∵四邊形ABCD是平行四邊形,∴AO=OC,AB∥CD。
∴∠E=∠F又∠AOE=∠COF。∴△AOE≌△COF(ASA)。
(2)連接EC、AF,則EF與AC滿足EF=AC時,四邊形AECF是矩形。理由如下:
由(1)可知△AOE≌△COF,
∴OE=OF。
∵AO=CO,
∴四邊形AECF是平行四邊形。
∵EF=AC,
∴四邊形AECF是矩形。
【解析】
試題分析:(1)根據(jù)平行四邊形的性質(zhì)和全等三角形的證明方法證明即可。
(2)連接EC、AF,則EF與AC滿足EF=AC是,四邊形AECF是矩形,首先證明四邊形AECF是平行四邊形,再根據(jù)對角線相等的平行四邊形為矩形即可證明。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90,AB=10cm,AC∶BC=4∶3,點P從點A出發(fā)沿AB方向向點B運動,速度為1cm/s,同時點Q從點B出發(fā)沿B→C→A方向向點A運動,速度為2cm/s,當一個運動點到達終點時,另一個運動點也隨之停止運動.
(1)設(shè)點P的運動時間為x(秒),△PBQ的面積為y(cm2),當△PBQ存在時,求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當x=5秒時,在直線PQ上是否存在一點M,使△BCM得周長最小,若存在,求出最小周長,若不存在,請說明理由.
(3)當點Q在BC邊上運動時,是否存在x,使得以△PBQ的一個頂點為圓心作圓時,另外兩個頂點均在這個圓上,若存在,求出 x的值;不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列判斷不正確的是( )。
A. 等腰三角形的兩底角相等
B. 等腰三角形的兩腰相等
C. 等邊三角形的三個內(nèi)角都是60°
D. 兩個內(nèi)角分別為120°、40°的三角形是等腰三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列軸對稱圖形中對稱軸最多的是( )。
A. 等腰直角三角形; B. 正方形; C. 有一個角為60°的等腰三角形; D. 圓
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級為了解學(xué)生課堂發(fā)言情況,隨機抽取該年級部分學(xué)生,對他們某天在課堂上發(fā)言的次數(shù)進行了統(tǒng)計,其結(jié)果如下表,并繪制了如圖所示的兩幅不完整的統(tǒng)計圖,已知B、E兩組發(fā)言人數(shù)的比為5:2,請結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:
(1)則樣本容量容量是______________,并補全直方圖;
(2)該年級共有學(xué)生500人,請估計全年級在這天里發(fā)言次數(shù)不少于12的次數(shù);
(3)已知A組發(fā)言的學(xué)生中恰有1位女生,E組發(fā)言的學(xué)生中有2位男生,現(xiàn)從A組與E組中分別抽一位學(xué)生寫報告,請用列表法或畫樹狀圖的方法,求所抽的兩位學(xué)生恰好是一男一女的概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖1,在正方形ABCD中,E、F分別是邊AD、DC上的點,且AF⊥BE.
(1)求證:AF=BE;
(2)如圖2,在正方形ABCD中,M、N、P、Q分別是邊AB、BC、CD、DA上的點,且MP⊥NQ.MP與NQ是否相等?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com