【題目】某一工程隊,在工程招標(biāo)時,接到甲、乙兩個工程隊的投標(biāo)書,施工一天,需付甲工程隊工程款1.2萬元,乙工程隊工程款0.5萬元. 工程領(lǐng)導(dǎo)小組根據(jù)甲、乙兩隊的投標(biāo)書測算,有如下方案:

1)甲隊單獨完成這項工程剛好如期完成;

2)乙隊單獨完成這項工程要比規(guī)定日期多用6天;

3)若甲、乙兩隊合作3天,余下的工程由乙隊單獨做也正好如期完成;

試問:在不耽誤工期的前提下,你覺得哪一種施工方案最節(jié)省工程款?請說明理由.

【答案】在不耽誤工期的情況下,選第三種方案最節(jié)省工程款,理由見詳解.

【解析】

由“甲、乙兩隊合做3天,余下的工程由乙隊單獨做也正好如期完成”,說明甲隊實際工作了3天,乙隊工作了x天正好完成任務(wù),據(jù)此列方程求得規(guī)定日期,然后再計算符合要求的方案所需的費用,比較即可得出結(jié)果.

解:設(shè)規(guī)定日期為天,

由題意得:,

解得:,

經(jīng)檢驗是原方程的根,

方案(2)不符合要求;

方案(1):(萬元)

方案(3):(萬元)

,

在不耽誤工期的情況下,選第三種方案最節(jié)省工程款.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋里裝有紅、黑、綠三種顏色的乒乓球(除顏色外其余都相同),其中紅球有個,黑球有個,綠球有個,第一次任意摸出一個球(不放回),第二次再摸出一個球,則兩次摸到的都是紅球的概率為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某陶瓷公司招工廣告稱:本公司工人工作時間:每天工作小時,每月工作天;待遇:工人按計件付工資,每月另加生活費元,按月結(jié)算…”.該公司只生產(chǎn)甲、乙兩種陶瓷,工人小王記錄了如下一些數(shù)據(jù):

甲種陶瓷

(單位:個

乙種陶瓷

(單位:個

總時間

(單位:分鐘)

計件工資

(單位:元)

(1)設(shè)生產(chǎn)每個甲種陶瓷所需的時間為分鐘,用含有的代數(shù)式表示生產(chǎn)每個乙種陶瓷所需的時間;

(2)設(shè)小王工人小王某月(工作天)生產(chǎn)甲種陶瓷個,乙種陶瓷,

①試求的函數(shù)關(guān)系式;(不需寫出自變量的取值范圍)

②根據(jù)市場調(diào)查,每個工人每月生產(chǎn)甲種陶瓷的數(shù)量不少于乙種陶瓷數(shù)量的倍,且生產(chǎn)每個乙種陶瓷的計件工資可提高元,甲種陶瓷計件工資也有提高的空間.若小王的工作效率不變,甲種陶瓷計件工資至少要提高多少元,小王的月工資(計件工資+福利工資月工資)才能領(lǐng)到元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分別以ABCD(∠CDA≠90°)的三邊AB,CD,DA為斜邊作等腰直角三角形,△ABE,△CDG,△ADF.
(1)如圖1,當(dāng)三個等腰直角三角形都在該平行四邊形外部時,連接GF,EF.請判斷GF與EF的關(guān)系(只寫結(jié)論,不需證明);
(2)如圖2,當(dāng)三個等腰直角三角形都在該平行四邊形內(nèi)部時,連接GF,EF,(1)中結(jié)論還成立嗎?若成立,給出證明;若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,有下列四個結(jié)論:;②;③;④,其中正確的個數(shù)有(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展唱紅歌比賽活動,九年級(1)、(2)班根據(jù)初賽成績,各選出5名選手參加復(fù)賽,兩個班各選出的5名選手的復(fù)賽成績(滿分為100分)如圖所示.

1)根據(jù)圖示填寫下表;

班級

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

九(1

85

85


九(2

80



2)結(jié)合兩班復(fù)賽成績的平均數(shù)和中位數(shù),分析哪個班級的復(fù)賽成績較好;

3)計算兩班復(fù)賽成績的方差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系

1)如圖a,若ABCD,點PAB、CD外部,則有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+D,得∠BPD=∠B﹣∠D.將點P移到AB、CD內(nèi)部,如圖b,以上結(jié)論是否成立?若成立,說明理由;若不成立,則∠BPD、∠B、∠D之間有何數(shù)量關(guān)系?請證明你的結(jié)論;

2)在圖b中,將直線AB繞點B逆時針方向旋轉(zhuǎn)一定角度交直線CD于點Q,如圖c,則∠BPD、∠B、∠D、∠BQD之間有何數(shù)量關(guān)系?(不需證明)

3)根據(jù)(2)的結(jié)論求圖d中∠A+B+C+D+E+F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如(圖1),在平面直角坐標(biāo)中,A(12,0),B(6,6),點C為線段AB的中點,點D與原點O關(guān)于點C對稱.

1)利用直尺和圓規(guī)在(圖1)中作出點D的位置(保留作圖痕跡),判斷四邊形OBDA的形狀,并說明理由;

2)在(圖1)中,動點E從點O出發(fā),以每秒1個單位的速度沿線段OA運動,到達(dá)點A時停止;同時,動點F從點O出發(fā),以每秒a個單位的速度沿OB→BD→DA運動,到達(dá)點A時停止.設(shè)運動的時間為t(秒).

①當(dāng)t=4時,直線EF恰好平分四邊形OBDA的面積,求a的值;

②當(dāng)t=5時,CE=CF,請直接寫出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系xoyA(﹣4,6),B(﹣1,2),C(﹣4,1).

1)作出△ABC關(guān)于直線x1對稱的圖形△A1B1C1并寫出△A1B1C1各頂點的坐標(biāo);

2)將△A1B1C1向左平移2個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊答案