【題目】如圖,已知直角梯形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,OC=3,過點B作BD⊥BC,交OA于點D.將∠DBC繞點B按順時針方向旋轉(zhuǎn),角的兩邊分別交y軸的正半軸、x軸的正半軸于E和F.

(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)當BE經(jīng)過(1)中拋物線的頂點時,求CF的長;
(3)連接EF,設(shè)△BEF與△BFC的面積之差為S,問:當CF為何值時S最小,并求出這個最小值.

【答案】
(1)

解:由題意可得A(0,2),B(2,2),C(3,0),

設(shè)所求拋物線的解析式為y=ax2+bx+c(a≠0),

,

解得

∴拋物線的解析式為y=﹣ + x+2


(2)

解:設(shè)拋物線的頂點為G,

則G(1, ),過點G作GH⊥AB,垂足為H,

則AH=BH=1,GH= ﹣2= ;

∵EA⊥AB,GH⊥AB,

∴EA∥GH;

∴GH是△BEA的中位線,

∴EA=2GH=

過點B作BM⊥OC,垂足為M,則BM=OA=AB;

∵∠EBF=∠ABM=90°,

∴∠EBA=∠FBM=90°﹣∠ABF,

∴Rt△EBA≌Rt△FBM,

∴FM=EA= ;

∵CM=OC﹣OM=3﹣2=1,

∴CF=FM+CM=


(3)

解:設(shè)CF=a,則FM=a﹣1,

∴BF2=FM2+BM2=(a﹣1)2+22=a2﹣2a+5,

∵△EBA≌△FBM,

∴BE=BF,

則SBEF= BEBF= (a2﹣2a+5),

又∵SBFC= FCBM= ×a×2=a,

∴S= (a2﹣2a+5)﹣a= a2﹣2a+ ,

即S= (a﹣2)2+ ;

∴當a=2(在0<a<3范圍內(nèi))時,S最小值=


【解析】(1)根據(jù)OA、AB、OC的長,即可得到A、B、C三點的坐標,進而可用待定系數(shù)法求出拋物線的解析式;(2)此題要通過構(gòu)造全等三角形求解;過B作BM⊥x軸于M,由于∠EBF是由∠DBC旋轉(zhuǎn)而得,所以這兩角都是直角,那么∠EBF=∠ABM=90°,根據(jù)同角的余角相等可得∠EBA=∠FBM;易知BM=OA=AB=2,由此可證得△FBM≌△EBA,則AE=FM;CM的長易求得,關(guān)鍵是FM即AE的長;設(shè)拋物線的頂點為G,由于G點在線段AB的垂直平分線上,若過G作GH⊥AB,則GH是△ABE的中位線,G點的坐標易求得,即可得到GH的長,從而可求出AE的長,即可由CF=CM+FM=AE+CM求出CF的長;(3)由(2)的全等三角形易證得BE=BF,則△BEF是等腰直角三角形,其面積為BF平方的一半;△BFC中,以CF為底,BM為高即可求出△BFC的面積;可設(shè)CF的長為a,進而表示出FM的長,由勾股定理即可求得BF的平方,根據(jù)上得出的兩個三角形的面積計算方法,即可得到關(guān)于S、a的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求出S的最小值及對應(yīng)的CF的長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了備戰(zhàn)初三物理、化學(xué)實驗操作考試,某校對初三學(xué)生進行了模擬訓(xùn)練,物理、化學(xué)各有4各不同的操作實驗題目,物理用番號①、②、③、④代表,化學(xué)用字母a、b、c、d表示,測試時每名學(xué)生每科只操作一個實驗,實驗的題目由學(xué)生抽簽確定,第一次抽簽確定物理實驗題目,第二次抽簽確定化學(xué)實驗題目.
(1)請用樹形圖法或列表法,表示某個同學(xué)抽簽的各種可能情況.
(2)小張同學(xué)對物理的①、②和化學(xué)的b、c號實驗準備得較好,他同時抽到兩科都準備的較好的實驗題目的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是 上一點,且 = ,連接CF并延長交AD的延長線于點E,連接AC,若∠ABC=105°,∠BAC=25°,則∠E的度數(shù)為(
A.45°
B.50°
C.55°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的交點為A、D(A在D的右側(cè)),與y軸的交點為C,且A(4,0),C(0,﹣3),對稱軸是直線x=1.

(1)求二次函數(shù)的解析式;
(2)若M是第四象限拋物線上一動點,且橫坐標為m,設(shè)四邊形OCMA的面積為s.請寫出s與m之間的函數(shù)關(guān)系式,并求出當m為何值時,四邊形OCMA的面積最大;
(3)設(shè)點B是x軸上的點,P是拋物線上的點,是否存在點P,使得以A,B、C,P四點為頂點的四邊形為平行四邊形?若存在,直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標系xOy中,O是坐標原點,點A是函數(shù)y1= (x<0)圖象上一點,AO的延長線交函數(shù)y2= (x>0,k<0)的y2圖象于點B,BC⊥x軸,若SABC= ,求函數(shù)y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算下列各題
(1)計算:(﹣2)2 (1+tan45°)
(2)先化簡,再求值: ,其中a= ﹣2,b= +2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年中考,阜陽市某區(qū)計劃在4月中旬的某個周二至周四這3天進行理化加試.王老師和朱老師都將被邀請當監(jiān)考老師,王老師隨機選擇2天,朱老師隨機選擇1天當監(jiān)考老師.
(1)求王老師選擇周二、周三這兩天的概率是多少?
(2)求王老師和朱老師兩人同一天監(jiān)考理化加試的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知矩形ABCD的三個頂點A(﹣3,4)、B(﹣3,0)、C(﹣1,0).以D為頂點的拋物線y=ax2+bx+c過點B.動點P從點D出發(fā),沿DC邊向點C運動,同時動點Q從點B出發(fā),沿BA邊向點A運動,點P、Q運動的速度均為每秒1個單位,運動的時間為t秒.過點P作PE⊥CD交BD于點E,過點E作EF⊥AD于點F,交拋物線于點G.

(1)求拋物線的解析式;
(2)當t為何值時,四邊形BDGQ的面積最大?最大值為多少?
(3)動點P、Q運動過程中,在矩形ABCD內(nèi)(包括其邊界)是否存在點H,使以B,Q,E,H為頂點的四邊形是菱形,若存在,請直接寫出此時菱形的周長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】準備一張矩形紙片,按如圖操作: 將△ABE沿BE翻折,使點A落在對角線BD上的M點,將△CDF沿DF翻折,使點C落在對角線BD上的N點.

(1)求證:四邊形BFDE是平行四邊形;
(2)若四邊形BFDE是菱形,AB=2,求菱形BFDE的面積.

查看答案和解析>>

同步練習(xí)冊答案