【題目】(1)操作發(fā)現(xiàn):如圖①,D是等邊△ABC的邊BA上一動點(點D與點B不重合),連接DC,以DC為邊在BC上方作等邊△DCF,連接AF,你能發(fā)現(xiàn)AF與BD之間的數(shù)量關系嗎?并證明你發(fā)現(xiàn)的結論;
(2)類比猜想:如圖②,當動點D運動至等邊△ABC邊BA的延長線時,其他作法與(1)相同,猜想AF與BD在(1)中的結論是否仍然成立?
(3)深入探究:Ⅰ.如圖③,當動點D在等邊△ABC邊BA上運動時(點D與B不重合),連接DC,以DC為邊在BC上方和下方分別作等邊△DCF和等邊△DCF′,連接AF,BF′,探究AF,BF′與AB有何數(shù)量關系?并證明你的探究的結論;Ⅱ.如圖④,當動點D在等邊△ABC的邊BA的延長線上運動時,其他作法與圖③相同,Ⅰ中的結論是否成立?若不成立,是否有新的結論?并證明你得出的結論.
【答案】(1)AF=BD;證明見解析;(2)成立,證明見解析;(3)Ⅰ.AF+BF′=AB;證明見解析;Ⅱ.Ⅰ中的結論不成立.新的結論是AF=AB+BF′;證明見解析.
【解析】解:(1)AF=BD。證明如下:
∵△ABC是等邊三角形(已知),∴BC=AC,∠BCA=60°(等邊三角形的性質(zhì))。
同理知,DC=CF,∠DCF=60°。
∴∠BCA﹣∠DCA=∠DCF﹣DCA,即∠BCD=∠ACF。
在△BCD和△ACF中,∵BC=AC,∠BCD=∠ACF,DC=CF,
∴△BCD≌△ACF(SAS)。∴BD=AF(全等三角形的對應邊相等)。
(2)AF=BD仍然成立。
(3)Ⅰ.AF+BF′=AB。證明如下:
由(1)知,△BCD≌△ACF(SAS),則BD=AF。
同理△BCF′≌△ACD(SAS),則BF′=AD。
∴AF+BF′=BD+AD=AB。
Ⅱ.Ⅰ中的結論不成立,新的結論是AF=AB+BF′。證明如下:
在△BCF′和△ACD中,∵BC=AC,∠BC F′=∠ACD,F′C=DC,
∴△BCF′≌△ACD(SAS)。∴BF′=AD(全等三角形的對應邊相等)。
又由(2)知,AF=BD,∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′。
(1)根據(jù)等邊三角形的三條邊、三個內(nèi)角都相等的性質(zhì),利用全等三角形的判定定理SAS可以證得△BCD≌△ACF;然后由全等三角形的對應邊相等知AF=BD。
(2)通過證明△BCD≌△ACF,即可證明AF=BD。
(3)Ⅰ.AF+BF′=AB;利用全等三角形△BCD≌△ACF(SAS)的對應邊BD=AF;同理△BCF′≌△ACD(SAS),則BF′=AD,所以AF+BF′=AB。
Ⅱ.Ⅰ中的結論不成立,新的結論是AF=AB+BF′:通過證明△BCF′≌△ACD(SAS),則BF′=AD(全等三角形的對應邊相等),再結合(2)中的結論即可證得AF=AB+BF′
科目:初中數(shù)學 來源: 題型:
【題目】據(jù)悉,超級磁力風力發(fā)電機可以大幅度提升風力發(fā)電效率,但其造價高昂,每座磁力風力發(fā)電機,其建造花費估計要6300萬美元,“6300萬”用科學記數(shù)法可表示為( )
A.6.3×103B.6.3×104C.6.3×107D.6.3×108
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CF交AD于點G,交BE于點H,下面說法正確的是( )
① △ABE的面積與△BCE的面積相等;② ∠AFG=∠AGF;③ ∠FAG=2∠ACF;④ BH=CH
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC上任意一點,過D分別向AB、AC引垂線,垂足分別為E、F點.
(1)當點D在BC的什么位置時,DE=DF?并證明.
(2)在滿足第一問的條件下,連接AD,此時圖中共有幾對全等三角形?并請給予寫出(不 必證明).
(3)過C點作AB邊上的高CG,請問DE、DF、CG的長之間存在怎樣的等量關系?并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“城市發(fā)展 交通先行”,成都市今年在中心城區(qū)啟動了緩堵保暢的二環(huán)路高架橋快速通道建設工程,建成后將大大提升二環(huán)路的通行能力.研究表明,某種情況下,高架橋上的車流速度V(單位:千米/時)是車流密度x(單位:輛/千米)的函數(shù),且當0<x≤28時,V=80;當28<x≤188時,V是x的一次函數(shù).函數(shù)關系如圖所示.
(1)求當28<x≤188時,V關于x的函數(shù)表達式;
(2)若車流速度V不低于50千米/時,求當車流密度x為多少時,車流量P(單位:輛/時)達到最大,并求出這一最大值.
(注:車流量是單位時間內(nèi)通過觀測點的車輛數(shù),計算公式為:車流量=車流速度×車流密度)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BF⊥AD,AD的延長線交BF于E,且E為垂足,則結論①AD=BF,②CF=CD,③AC+CD=AB,④BE=CF,⑤BF=2BE,其中正確的結論的個數(shù)是( )
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從﹣3、﹣2、﹣1、4、5中任取兩個數(shù)相加,若所得的和的最大值是a,最小值是b,則a+b的值是( 。
A. ﹣2 B. ﹣3 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個數(shù)的平方是正數(shù),則這個數(shù)是( )
A.正數(shù)B.負數(shù)C.不為零的數(shù)D.非負數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com