【題目】如圖,在菱形ABCD中,∠A110°,E,F分別是邊ABBC的中點,EPCD于點P,則∠PEF=(  )

A.35°B.45°C.50°D.55°

【答案】A

【解析】

延長PFAB的延長線于點G.根據(jù)已知可得∠B,∠BEF,∠BFE的度數(shù),再根據(jù)余角的性質(zhì)可得到∠EPF的度數(shù),從而不難求得∠FPC的度數(shù),根據(jù)余角的定義即可得到結(jié)果.

解:延長PFAB的延長線于點G

在△BGF與△CPF中,

,

∴△BGF≌△CPFASA),

GFPF,

FPG中點,

又∵∠BEP90°,

EFPG(直角三角形斜邊上的中線等于斜邊的一半),

PFPG(中點定義),

EFPF,

∴∠FEP=∠EPF

∵∠BEP=∠EPC90°,

∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,

∵四邊形ABCD為菱形,

ABBC,∠ABC180°﹣∠A70°,

E,F分別為AB,BC的中點,

BEBF,∠BEF=∠BFE180°70°)=55°,

∴∠FPC55°

∴∠EPF35°,

EFPF

∴∠PEF=∠EPF35°,

故選:A

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應(yīng)用題:

某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價促銷的原則,使生產(chǎn)的玩具能夠及時售出,據(jù)市場調(diào)查:每個玩具按元銷售時,每天可銷售個;若銷售單價每降低元,每天可多售出個.已知每個玩具的固定成本為元,問這種玩具的銷售單價為多少元時,廠家每天可獲利潤元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明與小亮玩游戲,如圖,兩組相同的卡片,每組三張,第一組卡片正面分別標有數(shù)字1,3,5;第二組卡片正面分別標有數(shù)字2,4,6.他們將卡片背面朝上,分組充分洗勻后,從每組卡片中各摸出一張,稱為一次游戲.當摸出的兩張卡片的正面數(shù)字之積小于10,則小明獲勝;當摸出的兩張卡片的正面數(shù)字之積超過10,則小亮獲勝.你認為這個游戲規(guī)則對雙方公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知BD⊥AC,CE⊥AB,垂足分別為DE,BD、CE交于點O,且AO平分∠BAC,,那么圖中全等三角形有_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】寒假麗麗用一塊邊長為10的正方形彩紙為她的人偶玩具做了一件披風,如圖所示,先將正方形紙片對折,展平后得到中線,再分別沿折痕,將點,點都折到上點處,此時領(lǐng)口的長為(

A.B.C.3D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠B60°,ECD上,將ADE沿AE翻折至AD'E,且AD'剛好過BC的中點P,則∠D'EC_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售一種商品,成本每千克 40 元,規(guī)定每千克售價不低于成本,且不高于 80 元,經(jīng)市場調(diào)查,每天的銷售量 y( 千克與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如表:

(1)求 y 與 x 之間的函數(shù)表達式;

(2)設(shè)商品每天的總利潤為 W(,求 W x 之間的函數(shù)表達式利潤收入﹣成本);

(3)指出售價為多少元時獲得利潤最大?并試說明(2)中總利潤W隨售價x的變化而變化的情況.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下說法合理的是( 。

A. 小明在10次拋圖釘?shù)脑囼炛邪l(fā)現(xiàn)3次釘朝上,由此他說釘尖朝上的概率是30%

B. 拋擲一枚普通的正六面體骰子,出現(xiàn)6的概率是的意思是每6次就有1次擲得6

C. 某彩票的中獎機會是2%,那么如果買100張彩票一定會有2張中獎

D. 在一次課堂進行的拋擲硬幣試驗中,某同學估計硬幣落地后,正面朝上的概率為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,O為坐標原點,A1,1),在x軸上確定點P,使AOP為等腰三角形,則符合條件的點P的個數(shù)共有(

A.4B.3C.2D.1

查看答案和解析>>

同步練習冊答案