【題目】以點P為端點豎直向下的一條射線PN,以它為對稱軸向左右對稱擺動形成了射線PN1,PN2,我們規(guī)定:∠N1PN2為點P搖擺角,射線PN搖擺掃過的區(qū)域叫作點P搖擺區(qū)域(含PN1,PN2).

在平面直角坐標系xOy中,點P(2,3).

(1)當點P的搖擺角為60°時,請判斷O(0,0)、A(1,2)、B(2,1)、C(2+,0)屬于點P的搖擺區(qū)域內的點是   (填寫字母即可);

(2)如果過點D(1,0),點E(5,0)的線段完全在點P的搖擺區(qū)域內,那么點P的搖擺角至少為   °;

(3)W的圓心坐標為(a,0),半徑為1,如果⊙W上的所有點都在點P的搖擺角為60°時的搖擺區(qū)域內,求a的取值范圍.

【答案】(1) B、C;(2)90°;(3)2﹣≤a≤2+.

【解析】

1)根據(jù)題意作出圖象,從而得到答案;

2如圖所示,當射線PN1過點D時,由對稱性可知,此時點E不在點P的搖擺區(qū)域內,

當射線PN2過點E時,由對稱性可知,此時點D在點P的搖擺區(qū)域內,易知:此時PQQE,從而得到EPQ的度數(shù),從而得到答案;

(3)設直線PN1x軸交于點MW與射線PN1相切于點N,P為端點豎直向下的一條射線PNx軸交于點Q由題意可知:∠PMW=60°,利用三角函數(shù)求出MWMQ的值,從而得到OM,OW的值,得到兩個W的坐標,從而得到a的取值范圍.

解:(1)根據(jù)搖擺角作出圖形,如圖所示,

O、A、B、C四點在平面直角坐標系中描出,后,

可以發(fā)現(xiàn),B、C在點P的搖擺區(qū)域內,

故屬于點P的搖擺區(qū)域內的點是B、C

(2)如圖所示,當射線PN1過點D時,

由對稱性可知,此時點E不在點P的搖擺區(qū)域內,

當射線PN2過點E時,

由對稱性可知,此時點D在點P的搖擺區(qū)域內,

易知:此時PQ=QE,

∴∠EPQ=45°,

∴如果過點D(1,0),點E(5,0)的線段完全在點P的搖擺區(qū)域內,那么點P的搖擺角至少為90°

(3)如果⊙W上的所有點都在點P的搖擺角為60°時的搖擺區(qū)域內,

此時⊙W與射線PN1相切,

設直線PN1x軸交于點M,W與射線PN1相切于點N,P為端點豎直向下的一條射線PNx軸交于點Q,

由定義可知:∠PMW=60°,

NW=1,PQ=3,

sinPMW=,tanPMW=

MW=,MQ=,

OM=2﹣,

OW=OM+MW=2﹣+=2﹣

∴此時W的坐標為:(2﹣,0)

由對稱性可知:當⊙W與射線PN2相切時,

此時W的坐標為:(2+,0)

a的范圍為:2﹣≤a≤2+

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】從寧?h到某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程與普通列車的行駛路程之和是920千米,而普通列車的行駛路程是高鐵的行駛路程的1.3倍.

1)求普通列車的行駛路程;

2)若高鐵的平均速度(千米/時)是普通列車的平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:河上有一座拋物線形橋洞,已知橋下的水面離橋拱頂部3m時,水面寬AB=6m,建立如圖所示的坐標系.

(1)當水位上升0.5m時,求水面寬度CD為多少米?(結果可保留根號)

(2)有一艘游船它的左右兩邊緣最寬處有一個長方體形狀的遮陽棚,此船正對著橋洞在上述河流中航行,若這船寬(最大寬度)2米,從水面到棚頂高度為1.8米.問這艘船能否從橋下洞通過?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC中,AB=4,BC=5,AC的長是一元二次方程x2﹣15x+54=0的一個根.

(1)求AC的長;

(2)在AC上找一點D,連接BD,使△ABD∽△ACB;

(3)以AC為一邊作一個三角形ACM,求出sinAMC的值.(所作三角形自己設計)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AEABC的角平分線;ED平分∠AEBAB于點D;CAE=B.

(1)如果AC=3.5 cm,求AB的長度;

(2)猜想:EDAB的位置關系,并證明你的猜想。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+cc0)的圖象與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,且OB=OC=3,頂點為M

1)求二次函數(shù)的解析式;

2)點P為線段BM上的一個動點,過點Px軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關于m的函數(shù)解析式,并寫出m的取值范圍;

3)探索:線段BM上是否存在點N,使NMC為等腰三角形?如果存在,求出點N的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在半徑為2cm,圓心角為90°的扇形OAB中,分別以OA、OB為直徑作半圓,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD為∠BAC的平分線,添下列條件后,不能證明△ABD≌△ACD的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是“經過圓外一點作圓的切線”的尺規(guī)作圖的過程.

已知:P為外一點.求作:經過P點的切線.作法:如圖,(1)連結OP;(2)以OP為直徑作圓,與交于C、D兩點.(3)作直線PC、PD.則直線PC、PD就是所求作經過P點的切線.以上作圖的依據(jù)是:_____

查看答案和解析>>

同步練習冊答案