【題目】如圖,在,,以為圓心,任意長為半徑畫弧,分別交,于點,,再分別以,,為圓心,大于長為半徑畫弧,兩弧交于點,作弧線,交于點.已知,,則的長為(

A.B.C.D.

【答案】C

【解析】

直接利用基本作圖方法得出AE是∠CAB的平分線,進而結(jié)合全等三角形的判定與性質(zhì)得出AC=AD,再利用勾股定理得出AC的長.

過點EEDAB于點D,由作圖方法可得出AE是∠CAB的平分線,

ECAC,EDAB

EC=ED=3,

RtACERtADE中,

,

RtACERtADEHL),

AC=AD

∵在RtEDB中,DE=3BE=5,

BD=4

設(shè)AC=x,則AB=4+x,

故在RtACB中,

AC2+BC2=AB2,

x2+82=x+42,

解得:x=6,即AC的長為:6

故答案為:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于A-1,0),B3,0)兩點.

1)求該拋物線的解析式;

2)求該拋物線的對稱軸以及頂點坐標;

3)設(shè)(1)中的拋物線上有一個動點P,當點P在該拋物線上滑動到什么位置時,滿足SPAB=8,并求出此時P點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,.①以點為圓心,長為半徑畫弧,分別交于點、;②在分別以、為圓心,長為半徑畫弧,兩弧交于點;③連結(jié)、,則四邊形的面積為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4.則下列四個結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△AED的周長是9.其中正確的結(jié)論是__(把你認為正確結(jié)論的序號都填上.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,其中A點坐標為(﹣3,0),與y軸交于點C,點D(﹣2,﹣3)在拋物線上.

(1)求拋物線的解析式;

(2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值;

(3)若拋物線上有一動點P,使三角形ABP的面積為6,求P點坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB兩種型號臺燈,若購買2A型臺燈和6B型臺燈共需610元.若購買6A型臺燈和2B型臺燈共需470元.

1)求A、B兩種型號臺燈每臺分別多少元?

2)采購員小紅想采購A、B兩種型號臺燈共30臺,且總費用不超過2200元,則最多能采購B型臺燈多少臺?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個邊長為m+3的正方形,先將這個正方形兩鄰邊長分別增加1和減少1,得到的長方形的面積為S1.

1)試探究該正方形的面積SS1的差是否是一個常數(shù),如果是,求出這個常數(shù);如果不是,說明理由;

2)再將這個正方形兩鄰邊長分別增加4和減少2,得到的長方形的面積為S2.

試比較S1,S2的大小;

m為正整數(shù)時,若某個圖形的面積介于S1S2之間(不包括S1,S2)且面積為整數(shù),這樣的整數(shù)值有且只有16個,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形的對角線,、分別是、、的中點,則的值是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,海中兩個燈塔A,B,其中B位于A的正東方向上,漁船跟蹤魚群由西向東航行,在點C處測得燈塔A在西北方向上,燈塔B在北偏東30°方向上,漁船不改變航向繼續(xù)向東航行30海里到達點D,這時測得燈塔A在北偏西60°方向上,求燈塔A,B間的距離.(計算結(jié)果用根號表示,不取近似值)

查看答案和解析>>

同步練習(xí)冊答案