如圖,⊙O的直徑AB與弦CD(不是直徑)相交于點E,且CE=DE,過點B作CD得平行線AD延長線于點F.
(1)求證:BF是⊙O的切線;
(2)連接BC,若⊙O的半徑為4,sin∠BCD=,求CD的長?
解:(1)證明:∵AB是⊙O的直徑,CE=DE,
∴AB⊥CD,∴∠AED=90°,
∵CD∥BF,∴∠ABF=∠AED=90°,
∴BF是⊙O的切線;
(2)連接BD,
∵AB是⊙O的切線,∴∠ADB=90°,
∴BD=AB•sin∠BAD=AB•sin∠BCD=,
,
∵S=AB•DE=AD•BD,
∴DE=,
∴CD=2DE=
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

(11·肇慶)已知兩圓的半徑分別為1和3.若兩圓相切,則兩圓的圓心距為________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

(2011貴州安順,18,4分)如圖,在RtABC中,∠C=90°,CA=CB=4,分別以AB、C為圓心,以AC為半徑畫弧,三條弧與邊AB所圍成的陰影部分的面積是          

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知⊙O1與⊙O2相切,⊙O1的半徑為9 cm,⊙O2的半徑為2 cm,則O1O2的長
A.1 cmB.5 cmC.1 cm或5 cmD.0.5cm或2.5cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

(11·漳州)如圖是一個圓錐形型的紙杯的側(cè)面展開圖,已知圓錐底面半徑為5 cm,母線長為15cm,那么紙杯的側(cè)面積為_  ▲  cm2.(結(jié)果保留π

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本小題10分)在等腰梯形ABCD中,AD∥BC,且AD=2,以CD為直徑作⊙
O1,交BC于點E,過點E作EF⊥AB于F,建立如圖12所示的平面直角坐標系,已知A,
B兩點的坐標分別為A(0,2),B(-2,0).
(1)求C,D兩點的坐標.
(2)求證:EF為⊙O1的切線.
(3)探究:如圖13,線段CD上是否存在點P,使得線段PC的長度與P點到y(tǒng)軸的距離相等?如果存在,請找出P點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分8分)如圖,AB是⊙O的直徑,過B點作⊙O的切線,交弦AE的延
長線于點C,作,垂足為D,若,,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

(2011•南京)如圖,在平面直角坐標系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數(shù)y=x的圖象被⊙P截得的弦AB的長為,則a的值是( 。
        

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,BD為⊙O的直徑,ABACADBCE,AE=2,ED=4.

(1)求證:△ABE∽△ADB;
(2)求AB的長;
(3)延長DBF,使BFOB,連接FA,試判斷直線FA與⊙O的位置關系,并說明理由.

查看答案和解析>>

同步練習冊答案