【題目】(10分)如圖,在矩形ABCD中,E,F(xiàn)為BC上兩點,且BE=CF,連接AF,DE交于點O.
求證:(1)△ABF≌△DCE;
(2)△AOD是等腰三角形.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)根據(jù)矩形的性質(zhì)可得∠B=∠C=90°,AB=DC,然后求出BF=CE,再利用“邊角邊”證明△ABF和△DCE全等即可;
(2)根據(jù)全等三角形對應(yīng)角相等可得∠BAF=∠EDC,然后求出∠DAF=∠EDA,然后根據(jù)等腰三角形的定義證明即可.
試題解析:(1)在矩形ABCD中,∠B=∠C=90°,AB=DC,
∵BE=CF,BF=BC-FC,CE=BC-BE,
∴BF=CE,
在△ABF和△DCE中,
,
∴△ABF≌△DCE(SAS);
(2)∵△ABF≌△DCE,
∴∠BAF=∠EDC,
∵∠DAF=90°-∠BAF,∠EDA=90°-∠EDC,
∴∠DAF=∠EDA,
∴△AOD是等腰三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是邊長為4 的等邊△ABC的內(nèi)心,將△OBC繞點O逆時針旋轉(zhuǎn)30°得到△OB1C1 , B1C1交BC于點D,B1C1交AC于點E,則DE= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個多邊形的各邊都相等,且各內(nèi)角也都相等,那么這個多邊形就叫做正多邊形,如圖,就是一組正多邊形,觀察每個正多邊形中的變化情況,解答下列問題.
(1)將下面的表格補充完整:
(2)根據(jù)規(guī)律,是否存在一個正n邊形,使其中的?若存在,直接寫出的值;若不存在,請說明理由.
(3)根據(jù)規(guī)律,是否存在一個正n邊形,使其中的?若存在,直接寫出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 在平面直角坐標系中的位置如圖所示.
(1)作關(guān)于點成中心對稱的 .
(2)將向右平移4個單位,作出平移后的.
(3)在軸上求作一點,使的值最小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設(shè)點A(x1 , y1)和點B(x2 , y2)是反比例函數(shù)y= 圖象上的兩點,當x1<x2<0時,y1>y2 , 則一次函數(shù)y=﹣2x+k的圖象不經(jīng)過的象限是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于點G,點E、F分別為AG、CD的中點,連接DE、FG.
(1)求證:四邊形DEGF是平行四邊形;
(2)當點G是BC的中點時,求證:四邊形DEGF是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCO的邊OA、OC在坐標軸上,點B坐標為(6,6),將正方形ABCO繞點C逆時針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點G,ED的延長線交線段OA于點H,連CH、CG.
(1)求證:△CBG≌△CDG;
(2)求∠HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關(guān)系,說明理由;
(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過程中,四邊形AEBD能否為矩形?如果能,請求出點H的坐標;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】按要求完成下列證明:
已知:如圖,AB∥CD,直線AE交CD于點C,∠BAC+∠CDF=180°.
求證:AE∥DF.
證明: ∵AB∥CD(____________________________) ,
∴∠BAC=∠DCE(__________________________________________________________________________).
∵∠BAC+∠CDF=180°(已知),
∴____________ +∠CDF=180°(____________________________________).
∴AE∥DF(______________________________________________________________________).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=﹣2x+2的圖象與x軸、y軸分別交于點A,B.在y軸左側(cè)有一點P(﹣1,a).
(1)如圖1,以線段AB為直角邊在第一象限內(nèi)作等腰Rt△ABC,且∠BAC=90°,求點C的坐標;
(2)當a=時,求△ABP的面積;
(3)當a=﹣2時,點Q是直線y=﹣2x+2上一點,且△POQ的面積為5,求點Q的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com