【題目】如果一元一次方程的根是一元一次不等式組的解,則稱該一元一次方程為該不等式組的關(guān)聯(lián)方程
(1)在方程①3x﹣1=0,②x﹣(3x+1)=﹣7中,不等式組的關(guān)聯(lián)方程是 ;(填序號(hào))
(2)若不等式組的一個(gè)關(guān)聯(lián)方程的解是整數(shù),則這個(gè)關(guān)聯(lián)方程可以是 ;(寫出一個(gè)即可)
(3)若方程10﹣3x=2x,1+x=2(x﹣1)都是關(guān)于x的不等式組的關(guān)聯(lián)方程,求出m的取值范圍.
【答案】(1)②;(2)x﹣1=0(答案不唯一,只要解為x=1即可);(3)0<m≤2.
【解析】
(1)先求出一元一次方程的解和一元一次不等式組的解集,再得出答案即可;
(2)先求出不等式組的解集,再求出不等式的整數(shù)解,再得出方程即可;
(3)先求出不等式組的解集和一元一次方程的解,再得出關(guān)于m的不等式組,求出不等式組的解集即可.
解:(1)解方程3x﹣1=0得:x,
解方程x﹣(3x+1)=﹣7得:x=3,
解不等式組得:<x<5,
所以不等式組的關(guān)聯(lián)方程是②,
故答案為:②;
(2)解不等式組得:,
∴不等式組的整數(shù)解是1,
∴不等式組的一個(gè)關(guān)聯(lián)方程可以是x﹣1=0,
故答案為:x﹣1=0(答案不唯一,只要解為x=1即可);
(3)解方程10﹣3x=2x得:x=2,
解方程1+x=2(x﹣1)得:x=3,
解不等式組得:m≤x<m+3,
∵方程10﹣3x=2x,1+x=2(x﹣1)都是關(guān)于x的不等式組的關(guān)聯(lián)方程,
∴,
解得:0<m≤2,
即m的取值范圍是0<m≤2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有3本和6本數(shù)學(xué)課本整齊地疊放在講臺(tái)上,請(qǐng)根據(jù)圖中所給的數(shù)據(jù)信息,解答下列問(wèn)題:
(1)若設(shè)每本數(shù)學(xué)書(shū)厚度為,請(qǐng)列出方程并求出每本書(shū)的厚度.
(2)若設(shè)桌子的高度為,請(qǐng)列出方程并求出桌子的高度.
(3)請(qǐng)結(jié)合(1)(2)的計(jì)算,寫出數(shù)學(xué)課本數(shù)(本放在桌子上的最大高度之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為進(jìn)一步提高全民“節(jié)約用水”意識(shí),某學(xué)校組織學(xué)生進(jìn)行家庭月用水量情況調(diào)查活動(dòng),小瑩隨機(jī)抽查了所住小區(qū)n戶家庭的月用水量,繪制了下面不完整的統(tǒng)計(jì)圖.
(1)求n并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求這n戶家庭的月平均用水量;并估計(jì)小瑩所住小區(qū)420戶家庭中月用水量低于月平均用水量的家庭戶數(shù);
(3)從月用水量為5m3和和9m3的家庭中任選兩戶進(jìn)行用水情況問(wèn)卷調(diào)查,求選出的兩戶中月用水量為5m3和9m3恰好各有一戶家庭的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明到某服裝商場(chǎng)進(jìn)行社會(huì)調(diào)查,了解到該商場(chǎng)為了激勵(lì)營(yíng)業(yè)員的工作積極性,實(shí)行“月總收入=基本工資+計(jì)件獎(jiǎng)金”的方法,并獲得如下信息:
營(yíng)業(yè)員A:月銷售件數(shù)200件,月總收入3400元;
營(yíng)業(yè)員B:月銷售件數(shù)300件,月總收入3700元;
假設(shè)營(yíng)業(yè)員的月基本工資為x元,銷售每件服裝獎(jiǎng)動(dòng)y元.
(1)求x和y的值;
(2)商場(chǎng)為了多銷售服裝,對(duì)顧客推薦一種購(gòu)買方式:如果購(gòu)買甲服裝3件,乙服裝2件,丙服袋1件共需390元:如果購(gòu)買甲服裝1件,乙服裝2件,丙服裝3件共需370元.某顧客想購(gòu)買甲、乙、丙服裝各一件共需多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某住宅小區(qū)在施工過(guò)程中留下了一塊空地(圖中的四邊形),經(jīng)測(cè)量,在四邊形中,,,,,.
(1)若連接,則是直角三角形嗎?為什么?
(2)小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米150元,試問(wèn)鋪滿這塊空地共需花費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ACB中,∠ACB=90°,CE是△ACB的中線,分別過(guò)點(diǎn)A、點(diǎn)C作CE和AB的平行線,交于點(diǎn)D.
(1)求證:四邊形ADCE是菱形;
(2)若CE=4,且∠DAE=60°,求△ACB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線,與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)若點(diǎn)P(m,n)是拋物線上的一點(diǎn),過(guò)點(diǎn)P作x軸的垂線,垂足為點(diǎn)D.
①在的條件下,當(dāng)時(shí),n的取值范圍是,求拋物線的表達(dá)式;
②若D點(diǎn)坐標(biāo)(4,0),當(dāng)時(shí),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的半徑為2,AB為直徑,CD為弦.AB與CD交于點(diǎn)M,將 沿CD翻折后,點(diǎn)A與圓心O重合,延長(zhǎng)OA至P,使AP=OA,連接PC
(1)求CD的長(zhǎng);
(2)求證:PC是⊙O的切線;
(3)點(diǎn)G為 的中點(diǎn),在PC延長(zhǎng)線上有一動(dòng)點(diǎn)Q,連接QG交AB于點(diǎn)E.交 于點(diǎn)F(F與B、C不重合).問(wèn)GEGF是否為定值?如果是,求出該定值;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016浙江省衢州市)如圖,正方形ABCD的頂點(diǎn)A,B在函數(shù)(x>0)的圖象上,點(diǎn)C,D分別在x軸,y軸的正半軸上,當(dāng)k的值改變時(shí),正方形ABCD的大小也隨之改變.
(1)當(dāng)k=2時(shí),正方形A′B′C′D′的邊長(zhǎng)等于____.
(2)當(dāng)變化的正方形ABCD與(1)中的正方形A′B′C′D′有重疊部分時(shí),k的取值范圍是______________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com