【題目】如圖,平面直角坐標(biāo)系中,將含30°的三角尺的直角頂點C落在第二象限.其斜邊兩端點A、B分別落在x軸、y軸上,且AB=12cm。

(1)(1)若OB=6cm.①求點C的坐標(biāo);②若點A向右滑動的距離與點B向上滑動的距離相等,求滑動的距離
(2)點C與點O的距離的最大值= cm.

【答案】
(1)

解:(1)①過點C作y軸的垂線,垂足為D,如圖1:

在Rt△AOB中,AB=12,OB=6,則BC=6,∴∠BAO=30°,∠ABO=60°,又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,∴BD=3,CD=3,

所以點C的坐標(biāo)為(﹣3,9);

②設(shè)點A向右滑動的距離為x,根據(jù)題意得點B向上滑動的距離也為x,如圖2:

AO=12×cos∠BAO=12×cos30°=6.∴A'O=6﹣x,B'O=6+x,A'B'=AB=12在△A'O B'中,由勾股定理得,

(6﹣x)2+(6+x)2=122,解得:x=6(﹣1),∴滑動的距離為6(﹣1)


(2)12
【解析】(2)設(shè)點C的坐標(biāo)為(x,y),過C作CE⊥x軸,CD⊥y軸,垂足分別為E,D,如圖3:

則OE=﹣x,OD=y,∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,∴△ACE∽△BCD,
,即,∴y=﹣x,OC2=x2+y2=x2+(﹣x)2=4x2 ,
∴取AB中點D,連接CD,OD,則CD與OD之和大于或等于CO,當(dāng)且僅當(dāng)C,D,O三點共線時取等號,此時CO=CD+OD=6+6=12,故答案為:12.
(1)①過點C作y軸的垂線,垂足為D,利用含30°角的直角三角形的性質(zhì)解答即可;②設(shè)點A向右滑動的距離為x,得點B向上滑動的距離也為x,利用三角函數(shù)和勾股定理進(jìn)行解答;(2)過C作CE⊥x軸,CD⊥y軸,垂足分別為E,D,證明△ACE與△BCD相似,再利用相似三角形的性質(zhì)解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)概率的課堂上,老師提出問題:只有一張電影票,小明和小剛想通過抽取撲克牌的游戲來決定誰去看電影,請你設(shè)計一個對小明和小剛都公平的方案.
甲同學(xué)的方案:將紅桃2、3、4、5四張牌背面向上,小明先抽一張,小剛從剩下的三張牌中抽一張,若兩張牌上的數(shù)字之和是奇數(shù),則小明看電影,否則小剛看電影.
(1)甲同學(xué)的方案公平嗎?請用列表或畫樹狀圖的方法說明;
(2)乙同學(xué)將甲的方案修改為只用紅桃2、3、4三張牌,抽取方式及規(guī)則不變,乙的方案公平嗎?(只回答,不說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(0,3),且當(dāng)x=1時,y有最小值2.

(1)求a,b,c的值
(2)設(shè)二次函數(shù)y=k(2x+2)﹣(ax2+bx+c)(k為實數(shù)),它的圖象的頂點為D.
①當(dāng)k=1時,求二次函數(shù)y=k(2x+2)﹣(ax2+bx+c)的圖象與x軸的交點坐標(biāo);
②請在二次函數(shù)y=ax2+bx+c與y=k(2x+2)﹣(ax2+bx+c)的圖象上各找出一個點M,N,不論k取何值,這兩個點始終關(guān)于x軸對稱,直接寫出點M,N的坐標(biāo)(點M在點N的上方);
③過點M的一次函數(shù)y=﹣x+t的圖象與二次函數(shù)y=ax2+bx+c的圖象交于另一點P,當(dāng)k為何值時,點D在∠NMP的平分線上?
④當(dāng)k取﹣2,﹣1,0,1,2時,通過計算,得到對應(yīng)的拋物線y=k(2x+2)﹣(ax2+bx+c)的頂點分別為(﹣1,﹣6,),(0,﹣5),(1,﹣2),(2,3),(3,10),請問:頂點的橫、縱坐標(biāo)是變量嗎?縱坐標(biāo)是如何隨橫坐標(biāo)的變化而變化的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)y=x與一次函數(shù)y=﹣x+7的圖象交于點A.

(1)求點A的坐標(biāo)。
(2)設(shè)x軸上有一點P(a,0),過點P作x軸的垂線(垂線位于點A的右側(cè)),分別交y=x和y=﹣x+7的圖象于點B、C,連接OC.若BC=OA,求△OBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)解方程:x2﹣2x﹣3=0;
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點P的坐標(biāo)為(0,4),直線y=x﹣3與x軸、y軸分別交于點A,B,點M是直線AB上的一個動點,則PM長的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A(8,1),B(0,﹣3),反比例函數(shù)y=(x>0)的圖象經(jīng)過點A,動直線x=t(0<t<8)與反比例函數(shù)的圖象交于點M,與直線AB交于點N.

(1)求k的值。
(2)求△BMN面積的最大值。
(3)若MA⊥AB,求t的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生參加社團(tuán)的情況,從2010年起,某市教育部門每年都從全市所有學(xué)生中隨機(jī)抽取2000名學(xué)生進(jìn)行調(diào)查,圖①、圖②是部分調(diào)查數(shù)據(jù)的統(tǒng)計圖(參加社團(tuán)的學(xué)生每人只能報一項)根據(jù)統(tǒng)計圖提供的信息解決下列問題:

(1)求圖②中“科技類”所在扇形的圓心角α的度數(shù)
(2)該市2012年抽取的學(xué)生中,參加體育類與理財類社團(tuán)的學(xué)生共有多少人?
(3)該市2014年共有50000名學(xué)生,請你估計該市2014年參加社團(tuán)的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線x=﹣1,下列結(jié)論:
①abc<0;②2a+b=0;③a﹣b+c>0;④4a﹣2b+c<0
其中正確的是(

A.①②
B.只有①
C.③④
D.①④

查看答案和解析>>

同步練習(xí)冊答案