三個牧童A,B,C在一塊正方形的牧場上看守一群牛,為保證公平合理,他們商量將牧場劃分為三塊分別看守,劃分的原則是:①每個人看守的牧場面積相等;②在每個區(qū)域內(nèi),各選定一個看守點,并保證在有情況時他們所需走的最大距離(看守點到本區(qū)域內(nèi)最遠處的距離)相等.按照這一原則,他們先設計了一種如圖1的劃分方案:把正方形牧場分成三塊全等的長方形,大家分頭守在這三個長方形的中心(對角線交點),看守自己的一塊牧場.
過了一段時間,牧童B和牧童C又分別提出里新的劃分方案.
牧童B的劃分方案如圖2:三塊長方形的面積相等,牧童的位置在三個小長方形的中心.
牧童C的劃分方案如圖3:把正方形的牧場分成三塊長方形,牧童的位置在三個小長方形的中心,并保證在有情況時三個人所需走的最大距離相等.請回答:

(I)長方形的兩條對角線是相等且互相平分的嗎?
(II)牧童B的劃分方案中,哪個牧童在有情況時所需走的最大距離較遠?
(III)牧童C的劃分方案是否符合他們商量的劃分原則?為什么?(提示:在計算時可取正方形邊長為2)
分析:(I)根據(jù)長方形的性質(zhì)即可得到長方形的兩條對角線是相等且互相平分.
(II)設正方形牧場的邊長為2,牧童A和B看守的長方形的一邊為1,設另一邊為x,根據(jù)三塊長方形的面積相等,有牧童B所在長方形的面積等于正方形面積的三分一,即
1
2
x=
1
3
×22,解出x=
4
3
,然后根據(jù)勾股定理分別計算出牧童A和B所需走的最大距離和牧童C所需走的最大距離,再比較大小即可得到誰走的最大距離較遠;
(III)設正方形牧場的邊長為2,對于牧童C的劃分方案,牧童A和B看守的長方形的一邊為1,設另一邊為x,根據(jù)三個人所需走的最大距離相等,利用勾股定理得到
12+x2=22+(2-x)2,解得x=
7
4
,然后計算牧童B所在長方形的面積為
7
4
,它不等于正方形面積的三分一,因此得到牧童C的劃分方案不符合他們商量的劃分原則.
解答:解:(I)長方形的兩條對角線是相等且互相平分.
(II)設正方形牧場的邊長為2,對于牧童B的劃分方案,如圖2:牧童A和B看守的長方形的一邊為1,設另一邊為x,
∵三塊長方形的面積相等,
1
2
x=
1
3
×22,x=
4
3
,
∴牧童A和B所需走的最大距離為長方形的對角線長的一半:
1
2
12+(
4
3
)
2
=
5
6
,牧童C所需走的最大距離為:
1
2
2 2+(2-
4
3
)
2
=
10
3
,
∴牧童C在有情況時所需走的最大距離較遠.
(III)牧童C的劃分方案不符合他們商量的劃分原則.理由如下:
設正方形牧場的邊長為2,對于牧童C的劃分方案,如圖3:牧童A和B看守的長方形的一邊為1,設另一邊為x,
∵三個人所需走的最大距離相等,
∴12+x2=22+(2-x)2,解得x=
7
4

∴牧童B的所在的長方形的面積=1×
7
4
=
7
4
,而正方形面積的三分之一為
4
3
,
∴三個長方形的面積不相等,不符合他們商量的劃分原則.
點評:本題考查了正方形的性質(zhì):正方形的四邊相等,四個角都為90°,面積等于邊長的平方.也考查了長方形的性質(zhì)以及勾股定理.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

三個牧童A、B、C在一塊正方形的牧場上看守一群牛,為保證公平合理,他們商量將牧場劃分為三塊分別看守,劃分的原則是:①每個人看守的牧場面積相等;②在每個區(qū)域內(nèi),各選定一個看守點,并保證在有情況時他們所需走的最大距離(看守點到本區(qū)域內(nèi)最遠處的距離)相等.按照這一原則,他們先設計了一種如圖1的劃分方案:把正方形牧場分成三塊相等的矩形,大家分頭守在這三個矩形的中心(對角線交點),看守自己的一塊牧場.過了一段時間,牧童B和牧童C又分別提出了新的劃分方案.牧童B的劃分方案如圖2:三塊矩形的面積相等,牧童的位置在三個小矩形的中心.牧童C的劃分方案如圖3:把正方形的牧場分成三塊矩形,牧童的位置在三個小矩形的中心,并保證在有情況時三個人所需走的最大距離相等.請回答:
(1)牧童B的劃分方案中,牧童
 
(填A、B或C)在有情況時所需走的最大距離較遠;
(2)牧童C的劃分方案是否符合他們商量的劃分原則,為什么?(提示:在計算時可取正方形邊長為2)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

三個牧童A,B,C在一塊正方形的牧場上看守一群牛,為保證公平合理,他們商量將牧場劃分為三塊分別看守,劃分的原則是:①每個人看守的牧場面積相等;②在每個區(qū)域內(nèi),各選定一個看守點,并保證在有情況時他們所需走的最大距離(看守點到本區(qū)域內(nèi)最遠處的距離)相等.按照這一原則,他們先設計了一種如圖1的劃分方案:把正方形牧場分成三塊全等的長方形,大家分頭守在這三個長方形的中心(對角線交點),看守自己的一塊牧場.
過了一段時間,牧童B和牧童C又分別提出里新的劃分方案.
牧童B的劃分方案如圖2:三塊長方形的面積相等,牧童的位置在三個小長方形的中心.
牧童C的劃分方案如圖3:把正方形的牧場分成三塊長方形,牧童的位置在三個小長方形的中心,并保證在有情況時三個人所需走的最大距離相等.請回答:

(I)長方形的兩條對角線是相等且互相平分的嗎?
(II)牧童B的劃分方案中,哪個牧童在有情況時所需走的最大距離較遠?
(III)牧童C的劃分方案是否符合他們商量的劃分原則?為什么?(提示:在計算時可取正方形邊長為2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

三個牧童A、B、C在一塊正方形的牧場上看守一群牛,為保證公平合理,他們商量將牧場劃分為三塊分別看守,劃分的原則是:①每個人看守的牧場面積相等;②在每個區(qū)域內(nèi),各選定一個看守點,并保證在有情況時他們所需走的最大距離(看守點到本區(qū)域內(nèi)最遠處的距離)相等.按照這一原則,他們先設計了一種如圖1的劃分方案:把正方形牧場分成三塊相等的矩形,大家分頭守在這三個矩形的中心(對角線交點),看守自己的一塊牧場.

過了一段時間,牧童B和牧童C又分別提出了新的劃分方案.

牧童B的劃分方案如圖2:三塊矩形的面積相等,牧童的位置在三個小矩形的中心.

牧童C的劃分方案如圖3:把正方形的牧場分成三塊矩形,牧童的位置在三個小矩形的中心,并保證在有情況時三個人所需走的最大距離相等.

請回答:

(1)牧童B的劃分方案中,牧童      (填A、BC)在有情況時所需走的最大距離較遠;

(2)牧童C的劃分方案是否符合他們商量的劃分原則?為什么?(提示:在計算時可取正方形邊長為2)

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《三角形》(13)(解析版) 題型:解答題

(2009•孝感)三個牧童A、B、C在一塊正方形的牧場上看守一群牛,為保證公平合理,他們商量將牧場劃分為三塊分別看守,劃分的原則是:①每個人看守的牧場面積相等;②在每個區(qū)域內(nèi),各選定一個看守點,并保證在有情況時他們所需走的最大距離(看守點到本區(qū)域內(nèi)最遠處的距離)相等.按照這一原則,他們先設計了一種如圖1的劃分方案:把正方形牧場分成三塊相等的矩形,大家分頭守在這三個矩形的中心(對角線交點),看守自己的一塊牧場.過了一段時間,牧童B和牧童C又分別提出了新的劃分方案.牧童B的劃分方案如圖2:三塊矩形的面積相等,牧童的位置在三個小矩形的中心.牧童C的劃分方案如圖3:把正方形的牧場分成三塊矩形,牧童的位置在三個小矩形的中心,并保證在有情況時三個人所需走的最大距離相等.請回答:
(1)牧童B的劃分方案中,牧童______(填A、B或C)在有情況時所需走的最大距離較遠;
(2)牧童C的劃分方案是否符合他們商量的劃分原則,為什么?(提示:在計算時可取正方形邊長為2)

查看答案和解析>>

同步練習冊答案