如圖所示,C、D是線段AB的三等分點,且AD=4,求AB的長.
科目:初中數(shù)學 來源: 題型:解答題
如圖,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).請將解題過程填寫完整.
解:∵EF∥AD(已知)
∴∠2= _________。ā 。
又∵∠1=∠2(已知)
∴∠1=∠3( 。
∴AB∥ _________。ā 。
∴∠BAC+ _________ =180°( 。
∵∠BAC=70°(已知)
∴∠AGD= _________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,那么DG∥BC嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,點C在線段AB上,AC=8cm,CB=6cm,點M、N分別是AC、BC的中點.
(1)求線段MN的長;
(2)若C為線段AB上任一點,滿足AC+CB=a cm,其它條件不變,你能猜想MN的長度嗎?并說明理由;
(3)若C在線段AB的延長線上,且滿足AC-CB=b cm,M、N分別為AC、BC的中點,你能猜想MN的長度嗎?請畫出圖形,寫出你的結論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
推理填空:
如圖,已知∠1 =∠2,∠B =∠C,可推得AB∥CD。理由如下:
∵ ∠1 =∠2(已知),且∠1 =∠4( ),
∴ ∠2 =∠4(等量代換),
∴ CE∥BF( ).
∴ ∠ =∠3( ).
又∵ ∠B =∠C(已知),
∴ ∠3 =∠B(等量代換),
∴ AB∥CD( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:單選題
如圖,鐵路道口的欄桿短臂長1m,長臂長16m.當短臂端點下降0.5m時,長臂端點升高(桿的寬度忽略不計)( )
A.4m | B.6m | C.8m | D.12m |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com