【題目】如圖,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.
(1)求出∠AOB及其補角的度數(shù);
(2)請求出∠DOC和∠AOE的度數(shù),并判斷∠DOE與∠AOB是否互補,并說明理由.
【答案】
(1)解:∠AOB=∠BOC+∠AOC=70°+50°=120°,
其補角為180°-∠AOB=180°-120°=60°
(2)解:∠DOC=∠BOC=×70°=35°,∠AOE=∠AOC=×50°=25°.
∠DOE與∠AOB互補.理由如下:
∵∠DOC=35°,∠AOE=25°,
∴∠DOE=∠DOC+∠COE =∠DOC+∠AOE=60°.
∴∠DOE+∠AOB=60°+120°=180°,
∴∠DOE與∠AOB互補.
【解析】(1)根據角的和差∠AOB=∠BOC+∠AOC即可算出∠AOB的度數(shù)了,然后根據補角的定義其補角為180°-∠AOB=180°-120°=60° ;
(2)根據角平分線的定義得出∠DOC=∠BOC=×70°=35°,∠AOE=∠AOC=×50°=25°.根據角的和差∠DOE=∠DOC+∠COE =∠DOC+∠AOE=60°.∠DOE+∠AOB=60°+120°=180°,從而得出∠DOE與∠AOB互補.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線與x軸交于點A(m﹣2,0)和B(2m+3,0)(點A在點B的左側),與y軸交于點C,連結BC.
(1)求m、n的值;
(2)如圖2,點N為拋物線上的一動點,且位于直線BC上方,連接CN、BN.求△NBC面積的最大值;
(3)如圖3,點M、P分別為線段BC和線段OB上的動點,連接PM、PC,是否存在這樣的點P,使△PCM為等腰三角形,△PMB為直角三角形同時成立?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某天早晨,王老師從家出發(fā),騎摩托車前往學校,途中在路旁一家飯店吃早餐,如圖所示的是王老師從家到學校這一過程中行駛路程s(千米)與時間t(分)之間的關系.
(1)學校離他家多遠?從出發(fā)到學校,用了多少時間?
(2)王老師吃早餐用了多少時間?
(3)王老師吃早餐以前的速度快還是吃完早餐以后的速度快?最快時速達到多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為矩形紙片,把紙片ABCD折疊,使點B恰好落在邊DC的中點E,折痕為AF,已知CD=8cm.求:
(1)AD的長;
(2)△ABF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事件中,能用列舉法求得事件發(fā)生的概率的是( )
A.投一枚圖釘,“釘尖朝上”
B.一名籃球運動員在罰球線上投籃,“投中”
C.把一粒種子種在花盆中,“發(fā)芽”
D.同時拋擲兩枚質地均勻的骰子,“兩個骰子的點數(shù)相同”
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】上海世博會的某紀念品原價168元,連續(xù)兩次降價a%后售價為128元.下列所列方程中正確的( )
A.168(1+a%)=128B.168(1-a%)=128
C.168(1-2a%)=128D.168(1+2a%)=128
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,頂點為M的拋物線分別與x軸相交于點A,B(點A在點B的右側),與y軸相交于點C(0,﹣3).
(1)求拋物線的函數(shù)表達式;
(2)判斷△BCM是否為直角三角形,并說明理由.
(3)拋物線上是否存在點N(點N與點M不重合),使得以點A,B,C,N為頂點的四邊形的面積與四邊形ABMC的面積相等?若存在,求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,已知拋物線的頂點為D,與x軸交于A、B兩點,與y軸交于C點,E為對稱軸上的一點,連接CE,將線段CE繞點E按逆時針方向旋轉90°后,點C的對應點C′恰好落在y軸上.
(1)直接寫出D點和E點的坐標;
(2)點F為直線C′E與已知拋物線的一個交點,點H是拋物線上C與F之間的一個動點,若過點H作直線HG與y軸平行,且與直線C′E交于點G,設點H的橫坐標為m(0<m<4),那么當m為何值時,=5:6?
(3)圖2所示的拋物線是由向右平移1個單位后得到的,點T(5,y)在拋物線上,點P是拋物線上O與T之間的任意一點,在線段OT上是否存在一點Q,使△PQT是等腰直角三角形?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com