【題目】二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線 x=1,下列結(jié)論:①ab<0;b2>4ac;a+b+2c<0;3a+c<0.其中正確的是_____

【答案】①②③

【解析】分析:由拋物線開口方向得到a>0,由拋物線與y軸的交點位置得到c<0,則可對①進行判斷;利用判別式的意義和拋物線與x軸有2個交點可對②進行判斷;利用x=1時,y<0c<0可對③進行判斷;利用拋物線的對稱軸方程得到b=-2a,加上x=-1時,y>0,即a-b+c>0,則可對④進行判斷.

詳解:∵拋物線開口向上,

a>0,

∵拋物線與y軸的交點在x軸下方,

c<0,

ab<0,所以①正確;

∵拋物線與x軸有2個交點,

=b24ac>0,所以②正確;

x=1時,y<0,

a+b+c<0,

c<0,

a+b+2c<0,所以③正確;

∵拋物線的對稱軸為直線x==1,

b=2a,

x=1時,y>0,即ab+c>0,

a+2a+c>0,所以④錯誤.

故答案為:①②③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=6,BC=12,點E在邊BC上,且BE=2CE,將矩形沿過點E的直線折疊,點C,D的對應(yīng)點分別為C′,D′,折痕與邊AD交于點F,當(dāng)點B,C′,D′恰好在同一直線上時,AF的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,過點O

1)若,求的度數(shù);

2)已知射線平分,射線平分

①若,求的度數(shù);

②若,則的度數(shù)為    (直接填寫用含的式子表示的結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在東西方向的海岸線l上有一長為1km的碼頭MN(如圖),在碼頭西端M的正西19.5km處有一觀察站A.某時刻測得一艘勻速直線航行的輪船位于A的北偏西30°,且與A相距40kmB處;經(jīng)過1小時20分鐘,又測得該輪船位于A的北偏東60°,且與A相距kmC處.

(1)求該輪船航行的速度(保留精確結(jié)果);

(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,M,N分別是邊AD,BC的中點,E,F(xiàn)分別是線段BM,CM的中點,當(dāng)AB:AD=___________時,四邊形MENF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初一(1)班針對你最喜愛的課外活動項目對全班學(xué)生進行調(diào)查(每名學(xué)生分別選一個活動項目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.

男、女生所選項目人數(shù)統(tǒng)計表

項目

男生(人數(shù))

女生(人數(shù))

機器人

7

9

3D打印

m

4

航模

2

2

其他

5

n

根據(jù)以上信息解決下列問題:

(1)m=_____,n=_____;

(2)扇形統(tǒng)計圖中機器人項目所對應(yīng)扇形的圓心角度數(shù)為_____°;

(3)從選航模項目的4名學(xué)生中隨機選取2名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請用列舉法(畫樹狀圖或列表)求所選取的2名學(xué)生中恰好有1名男生、1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是直線AB上一點,OD是∠BOC的平分線.

1)寫出圖中互補的角;

2)若∠AOC53°18′,求∠AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線(a≠0)經(jīng)過A(-1,0),B(20)兩點,與y軸交于點C

(1)求拋物線的解析式及頂點D的坐標(biāo);

(2)點P在拋物線的對稱軸上,當(dāng)△ACP的周長最小時,求出點P的坐標(biāo);

(3) 點N在拋物線上,點M在拋物線的對稱軸上,是否存在以點N為直角頂點的RtDNMRt△BOC相似,若存在,請求出所有符合條件的點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線T1:y=-x2-2x+3,T2:y=x2-2x+5,其中拋物線T1與x 軸交于A、B兩點,與y軸交于C點.P點是x軸上一個動點,過P點并且垂直于x軸的直線與拋物線T1和T2分別相交于N、M兩點.設(shè)P點的橫坐標(biāo)為t.

(1)用含t的代數(shù)式表示線段MN的長;當(dāng)t為何值時,線段MN有最小值,并求出此最小值;

(2)隨著P點運動,P、M、N三點的位置也發(fā)生變化.問當(dāng)t何值時,其中一點是另外兩點連接線段的中點?

(3)將拋物線T1平移, A點的對應(yīng)點為A'(m-3,n),其中≤m≤,且平移后的拋物線仍經(jīng)過C點,求平移后拋物線頂點所能達(dá)到的最高點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案