【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(﹣2,1),B(1,n)兩點.
根據(jù)以往所學的函數(shù)知識以及本題的條件,你能提出求解什么問題?并解決這些問題(至少三個問題).
【答案】見解析
【解析】
根據(jù)反比例函數(shù)的性質(zhì)、一次函數(shù)的性質(zhì)及三角形的面積公式即可求解.
解:①求反比例函數(shù)的解析式
設(shè)反比例函數(shù)解析式為
將A(-2,1)代入得 k = -2
所以反比例函數(shù)的解析式為
②求B點的坐標. (或n的值)
將x=1代入得y=-2
所以B(1,-2)
③求一次函數(shù)解析式
設(shè)一次函數(shù)解析式為y=kx+b
將A(-2,1) B(1,-2) 代入得
解得
所以一次函數(shù)的解析式為y= -x-1
④利用圖像直接寫出當x為何值時一次函數(shù)值等于反比例函數(shù)值.
x= -2或x=1時
⑤利用圖像直接寫出一次函數(shù)值大于反比例函數(shù)值時,x的取值范圍.
x<-2或0<x<1
⑥利用圖像直接寫出一次函數(shù)值小于反比例函數(shù)值時,x的取值范圍.
-2<x<0或x>1
⑦求C點的坐標.
將y=0代入y= -x-1得x= -1
所以C點的坐標為(-1,0)
⑧求D點的坐標.
將x=0代入y= -x-1得y= -1
所以D點的坐標為(0,-1)
⑨求AOB的面積
=+=+=
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=-1,點B的坐標為(1,0),則下列結(jié)論:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正確的結(jié)論有( )個.
A. 3B. 4C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,三根同樣的繩子AA1、BB1、CC1穿過一塊木板,姐妹兩人分別站在木板的左、右兩側(cè),每次各自選取本側(cè)的一根繩子,每根繩子被選中的機會相等.
(1)問:“姐妹兩人同時選中同一根繩子”這一事件是 事件,概率是 ;
(2)在互相看不見的條件下,姐姐先將左側(cè)A、C兩個繩端打成一個連結(jié),則妹妹從右側(cè)A1、B1、C1三個繩端中隨機選兩個打一個結(jié)(打結(jié)后仍能自由地通過木孔);請求出“姐姐抽動繩端B,能抽出由三根繩子連結(jié)成一根長繩”的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:A、P、B、C是⊙O上的四個點,且∠APC=∠CPB=60°
(1)判定△ABC的形狀,證明你的結(jié)論;
(2)若⊙O的半徑為2,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如今很多初中生購買飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此數(shù)學興趣小組對本班同學一天飲用飲品的情況進行了調(diào)查,大致可分為四種:
A:自帶白開水;B:瓶裝礦泉水;C:碳酸飲料;D:非碳酸飲料.
根據(jù)統(tǒng)計結(jié)果繪制如下兩個統(tǒng)計圖(如圖),根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)請你補全條形統(tǒng)計圖;
(2)在扇形統(tǒng)計圖中,求“碳酸飲料”所在的扇形的圓心角的度數(shù);
(3)為了養(yǎng)成良好的生活習慣,班主任決定在自帶白開水的5名同學(男生2人,女生3人)中隨機抽取2名同學擔任生活監(jiān)督員,請用列表法或樹狀圖法求出恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,且BE=CF.連接AE,BF,AE與BF交于點G.下列結(jié)論錯誤的是( )
A. AE=BF B. ∠DAE=∠BFC
C. ∠AEB+∠BFC=90° D. AE⊥BF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:四邊形ABCD是平行四邊形,兩邊AB,AD的長是關(guān)于x的方程的兩個實數(shù)根.
(1)當m為何值時,四邊形ABCD是菱形?
(2)求出此時菱形ABCD的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=-x+b與雙曲線分別相交于點A,B,C,D,已知點A的坐標為(-1,4),且AB:CD=5:2,則m=_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,要用籬笆(虛線部分)成一個矩形苗圃,其中兩邊靠的墻足夠長,中間用平行于的籬笆隔開,已知籬笆的總長度為18米,設(shè)矩形苗圃的一邊的長為,矩形苗圃面積為.
(1)求與的函數(shù)關(guān)系式;
(2)求所圍矩形苗圃的面積最大值;
(3)當所圍矩形苗圃的面積為時,則的長為多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com