【題目】如圖,AB∥CD,直線MN與AB、CD分別交于點(diǎn)E、F,FG平分∠EFD,EG⊥FG于點(diǎn)G,若∠CFN=110°,則∠BEG=( 。
A. 20°B. 25°C. 35°D. 40°
【答案】C
【解析】
已知∠CFN=110°,根據(jù)對(duì)頂角相等可得∠DFE=∠CFN=110°,因?yàn)?/span>FG平分∠EFD,由角平分線的定義可得∠EFG=∠EFD=55°;再由EG⊥FG,可得∠G=90°,即可求得∠GEF=35°;又因AB∥CD,∠EFD=110°,根據(jù)平行線的性質(zhì)可得∠BEF=70°,即可得∠BEG=∠BEF﹣∠GEF=35°.
∵∠CFN=110°,
∴∠DFE=∠CFN=110°,
∵FG平分∠EFD,
∴∠EFG=∠EFD=55°,
又EG⊥FG,即∠G=90°,
∴∠GEF=35°,
∵AB∥CD,∠EFD=110°,
∴∠BEF=70°,
∴∠BEG=∠BEF﹣∠GEF=35°.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1) (x+1)2-6=0;
(2)2x2-5x+2=0;
(3)x2+2x+2=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為6,點(diǎn)B是數(shù)軸上在A左側(cè)的一點(diǎn),且A,B兩點(diǎn)間的距離為11,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)數(shù)軸上點(diǎn)B表示的數(shù)是 ,當(dāng)點(diǎn)P運(yùn)動(dòng)到AB中點(diǎn)時(shí),它所表示的數(shù)是 ;
(2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若P,Q兩點(diǎn)同時(shí)出發(fā),求點(diǎn)P與Q運(yùn)動(dòng)多少秒時(shí)重合?
(3)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單拉長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若P,Q兩點(diǎn)同時(shí)出發(fā),求:
①當(dāng)點(diǎn)P運(yùn)動(dòng)多少秒時(shí),點(diǎn)P追上點(diǎn)Q?
②當(dāng)點(diǎn)P與點(diǎn)Q之間的距離為8個(gè)單位長(zhǎng)度時(shí),求此時(shí)點(diǎn)P在數(shù)軸上所表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AE⊥AB且AE=AB,BC⊥CD且BC=CD,請(qǐng)按圖中所標(biāo)注的數(shù)據(jù),計(jì)算圖中實(shí)線所圍成的面積S是( )
A.50B.62C.65D.68
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC 的三個(gè)頂點(diǎn)的位置如圖所示,點(diǎn) A′的坐標(biāo)是(-2,2),現(xiàn)將△ABC 平移,使點(diǎn) A 變換為點(diǎn) A′,點(diǎn) B′、C′分別是 B、C 的對(duì)應(yīng)點(diǎn).
(1) 請(qǐng)畫出平移后的△A′B′C′(不寫畫法),并直接寫出點(diǎn)B′、C′的坐標(biāo):B′ 、C′ ;
(2) 若△ABC 內(nèi)部一點(diǎn) P 的坐標(biāo)為(,),則點(diǎn) P 的對(duì)應(yīng)點(diǎn) P′的坐標(biāo)是 ;
(3) 連接 A′B,CC′,并求四邊形 A′BCC′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=3 cm,BC=4 cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)以2 cm/s的速度向點(diǎn)C移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)以1 cm/s的速度向點(diǎn)A移動(dòng),當(dāng)一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).若動(dòng)點(diǎn)P,Q同時(shí)出發(fā),則經(jīng)過(guò)多少秒時(shí),PQ∥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=10,BC=8,E為AD邊上一點(diǎn),沿CE將△CDE對(duì)折,使點(diǎn)D正好落在AB邊上F處,求tan∠AFE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(閱讀材料)解方程(x-1)2-5(x-1)+4=0時(shí),我們發(fā)現(xiàn):先將x-1看作一個(gè)整體,然后設(shè)x-1=y.……①,那么原方程可化為y2-5y+4=0,解得y1=1,y2=4.當(dāng)y=1時(shí),x-1=1,則x=2;當(dāng)y=4時(shí),x-1=4,則x=5,故原方程的解為x1=2,x2=5.
上述解題過(guò)程,在由原方程得到方程①的過(guò)程中,運(yùn)用了“換元法”達(dá)到了解方程的目的,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.
(解決問(wèn)題)
(1)請(qǐng)利用以上知識(shí)解方程:(3x+5)2-4(3x+5)+3=0;
(2)在△ABC中,∠C=90°,兩條直角邊的長(zhǎng)分別為a,b,斜邊的長(zhǎng)為c,且(a2+b2)(a2+b2+1)=12,求斜邊c的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖已知,為內(nèi)一定點(diǎn),上有一點(diǎn),上有一點(diǎn),當(dāng)的周長(zhǎng)取最小值時(shí),的度數(shù)是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com