【題目】已知點(diǎn)A(a,0)和B(0,b)滿足,分別過點(diǎn)A、B作x軸、y軸的垂線交于點(diǎn)C,如圖,點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿著O-B-C-A-O的路線移動(dòng).
(1)寫出A、B、C三點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)P移動(dòng)了6秒時(shí),描出此時(shí)P點(diǎn)的位置,并寫出點(diǎn)P的位置坐標(biāo);
(3)連結(jié)(2)中B、P兩點(diǎn),將線段BP向下平移h個(gè)單位(h>0),得到B′P′,若B′P′將四邊形OACB的周長(zhǎng)分成相等的兩部分,求h的值.
【答案】(1)A(4,0),B(0,6),C(4,6);(2)P(4,4);(3)h的值為2.
【解析】試題分析:
(1)由可解得:a=4,b=6,從而可得點(diǎn)A、B的坐標(biāo)分別為(4,0)和(0,6),結(jié)合題意可得點(diǎn)C的坐標(biāo)為(4,6);
(2)由題意可知第6秒時(shí),點(diǎn)P運(yùn)動(dòng)了12個(gè)單位長(zhǎng)度,由點(diǎn)A、B、C的坐標(biāo)可得OA=BC=4,AC=OB=6,由此即可得到點(diǎn)P的坐標(biāo)為(4,4);
(3)如下圖,當(dāng)OB′+AP′= (OB+AC)時(shí),BP平分四邊形OACBA的周長(zhǎng),由此根據(jù)題意可得:6-h+6-2-h=6,解得h=2.
試題解析:
(1)∵,
∴a-4=0且b-6=0,解得a=4,b=6,
∴點(diǎn)A、B的坐標(biāo)分別為(4,0)和(0,6),
∴點(diǎn)C的坐標(biāo)為(4,6);
(2)∵點(diǎn)P每秒移動(dòng)6個(gè)單位長(zhǎng)度,
∴6秒時(shí),點(diǎn)P移動(dòng)了12個(gè)單位長(zhǎng)度,
∵OA=BC=4,AC=OB=6,
∴第6秒時(shí),點(diǎn)P的坐標(biāo)為(4,4);
(3)如下圖所示,由題意可得當(dāng)OB′+AP′= (OB+AC)時(shí),BP平分四邊形OACBA的周長(zhǎng),
∴6-h+6-2-h=6,解得h=2.
即當(dāng)h=2時(shí),B′P′平分四邊形OABC的周長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角△ABC中,∠A為直角,AB=6,AC=8.點(diǎn)P,Q,R分別在AB,BC,CA邊上同時(shí)開始作勻速運(yùn)動(dòng),2秒后三個(gè)點(diǎn)同時(shí)停止運(yùn)動(dòng),點(diǎn)P由點(diǎn)A出發(fā)以每秒3個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q由點(diǎn)B出發(fā)以每秒5個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng),點(diǎn)R由點(diǎn)C出發(fā)以每秒4個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),在運(yùn)動(dòng)過程中:
(1)求證:△APR,△BPQ,△CQR的面積相等;
(2)求△PQR面積的最小值;
(3)用t(秒)(0≤t≤2)表示運(yùn)動(dòng)時(shí)間,是否存在t,使∠PQR=90°?若存在,請(qǐng)直接寫出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)分別為A(2,3)、B(3,1)、C(-2,-2).
(1)請(qǐng)?jiān)趫D中作出△ABC關(guān)于y軸對(duì)稱圖形△DEF(A、B、C的對(duì)應(yīng)點(diǎn)分別是D、E、F),并直寫出D、E、F的坐標(biāo).D、E、F點(diǎn)的坐標(biāo)是:D( , ) E( , ) F( , );
(2)求四邊形ABED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)O到△ABC的兩邊AB、AC所在直線的距離OD=OE,且OB=OC.
(1)如圖,若點(diǎn)O在BC上,求證:AB=AC;
(2)如圖,若點(diǎn)O在△ABC的內(nèi)部,求證:AB=AC;
(3)若點(diǎn)O在△ABC的外部,AB=AC成立嗎?請(qǐng)畫圖表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)對(duì)某種商品進(jìn)行銷售,第x天的銷售單價(jià)為m元/件,日銷售量為n件,其中m,n分別是x(1≤x≤30,且x為整數(shù))的一次函數(shù),銷售情況如下表:
(1)過程表中數(shù)據(jù),分別直接寫出m與x,n與x的函數(shù)關(guān)系式: , ;
(2)求商場(chǎng)銷售該商品第幾天時(shí)該商品的日銷售額恰好為3600元?
(3)銷售商品的第15天為兒童節(jié),請(qǐng)問:在兒童節(jié)前(不包括兒童節(jié)當(dāng)天)銷售該商品第幾天時(shí)該商品的日銷售額最多?商場(chǎng)決定將這天該商品的日銷售額捐獻(xiàn)給兒童福利院,試求出商場(chǎng)可捐款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是真命題的是( 。
A.無理數(shù)是開方開不盡的數(shù)
B.y 軸上的點(diǎn),縱坐標(biāo)為 0
C.鄰補(bǔ)角一定互補(bǔ)
D.有且只有一條直線與已知直線垂直
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,射線CB∥OA,∠C=∠OAB=100°,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF。
(1)求∠EOB的度數(shù);
(2)若平行移動(dòng)AB,那么∠OBC∶∠OFC的值是否隨之變化?若變化,找出變化規(guī)律;若不變,求出這個(gè)比值;
(3)在平行移動(dòng)AB的過程中,是否存在某種情況,使∠OEC=∠OBA?若存在,求出其度數(shù);若不存在,說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com