【題目】計算:(sin30°﹣1)2 ×sin45°+tan60°×cos30°.

【答案】解:(sin30°﹣1)2 ×sin45°+tan60°×cos30°
= × + ×
= ﹣1+
=
【解析】此題涉及有理數(shù)的乘方、特殊角的三角函數(shù)值的求法,在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果即可.
【考點精析】通過靈活運用特殊角的三角函數(shù)值和實數(shù)的運算,掌握分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”;先算乘方、開方,再算乘除,最后算加減,如果有括號,先算括號里面的,若沒有括號,在同一級運算中,要從左到右進行運算即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解中學(xué)生獲取信息的主要渠道,設(shè)置“A:報紙,B:電視,C:網(wǎng)絡(luò),D:身邊的人,E:其他”五個選項(五項中必選且只能選一項)的調(diào)查問卷,先隨機抽取50名中學(xué)生進行該問卷調(diào)查,根據(jù)調(diào)查的結(jié)果繪制條形圖如圖,該調(diào)查的方式和圖中a的值分別是( )

A. 抽樣調(diào)查,24 B. 普查,24 C. 抽樣調(diào)查,26 D. 普查,26

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:()2+(﹣4)0cos45°.

【答案】1

【解析】試題分析:把原式的第一項根據(jù)負整數(shù)指數(shù)冪的意義化簡,第二項根據(jù)算術(shù)平方根的定義求出9的算術(shù)平方根,第三項根據(jù)零指數(shù)公式化簡,最后一項利用特殊角的三角函數(shù)值化簡,合并后即可求出值.

試題解析:原式=4﹣3+1﹣

=2﹣1

=1.

型】解答
結(jié)束】
16

【題目】《九章算術(shù)》勾股章有一題:今有二人同所立,甲行率七,乙行率三.乙東行,甲南行十步而斜東北與乙會.問甲乙行各幾何.大意是說,已知甲、乙二人同時從同一地

點出發(fā),甲的速度為7,乙的速度為3.乙一直向東走,甲先向南走10步,后又斜向北偏東方向走了一段后與乙相遇.那么相遇時,甲、乙各走了多遠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖,在等腰直角三角形MNC中,CNMN,將MNC繞點C順時針旋轉(zhuǎn)60°,得到ABC,連接AM,BM,BMAC于點O.

(1)NCO的度數(shù)為________;

(2)求證:CAM為等邊三角形;

(3)連接AN,求線段AN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC.M、N分別是AB、AC的中點,D、E為BC上的點,連接DN、EM.若AB=13cm,BC=10cm,DE=5cm,則圖中陰影部分的面積為cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c的對稱軸是直線x=2,且經(jīng)過點(1,4)和點(5,0),求這個函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交AB于點D,交BC于點E.

(1)求證:BE=CE;
(2)若BD=2,BE=3,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩個可以自由轉(zhuǎn)動的均勻轉(zhuǎn)盤A、B,都被分成了3等份,并在每份內(nèi)均標(biāo)有數(shù)字,如圖所示,規(guī)則如下:
①分別轉(zhuǎn)動轉(zhuǎn)盤A、B.
②兩個轉(zhuǎn)盤停止后,將兩個指針?biāo)阜輧?nèi)的數(shù)字相乘(若指針停在等分線上,那么重轉(zhuǎn)一次,直到指針指向某一份為止).

(1)用列表法(或樹狀圖)分別求出數(shù)字之積為3的倍數(shù)和為5的倍數(shù)的概率;
(2)小亮和小蕓想用這兩個轉(zhuǎn)盤做游戲,他們規(guī)定:數(shù)字之積為3的倍數(shù)時,小亮得2分;數(shù)字之積為5的倍數(shù)時,小蕓得3分.這個游戲?qū)﹄p方公平嗎?請說明理由;認為不公平的,試修改得分規(guī)定,使游戲雙方公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰ABC中,ABAC,BD,CE分別是邊AC,AB上的中線,BDCE相交于點O,點M,N分別為線段BOCO的中點.求證:四邊形EDNM是矩形.

查看答案和解析>>

同步練習(xí)冊答案