精英家教網 > 初中數學 > 題目詳情

【題目】如圖,有一個可以自由轉動的轉盤被平均分成4個扇形,分別標有12、3、4四個數字,小王和小李各轉動一次轉盤為一次游戲.當每次轉盤停止后,指針所指扇形內的數為各自所得的數,一次游戲結束得到一組數(若指針指在分界線時重轉).(1)請你用樹狀圖或列表的方法表示出每次游戲可能出現的所有結果;(2)求每次游戲結束得到的一組數恰好是方程x24x+30的解的概率.

【答案】(1)見解析;(2).

【解析】

1)列表得出所有等可能的情況數即可;

2)找出恰好是方程x23x+2=0的解的情況數,求出所求的概率即可.

1)列表如下:

2)所有等可能的情況有16種,其中是方程x24x+3=0的解的有(1,3),(3,1)共2種,則P(是方程解)

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在半徑為1的扇形AOB中,∠AOB90°,點C是弧AB上的一個動點(不與點AB重合)ODBC,OEAC,垂足分別為D、E

1)當時,求線段OD的長;

2)在△DOE中是否存在長度保持不變的邊?如果存在,請指出是哪條邊,并求其長度;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,過y軸上一個動點Mx軸的平行線,交雙曲線y= 于點A,交雙曲線于點B,點C、點Dx軸上運動,且始終保持DCAB,則平行四邊形ABCD的面積是( 。

A. 7 B. 10 C. 14 D. 28

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6,BC=8,沿直線MN對折,使A、C重合,直線MN交AC于O.

(1)求證:COM∽△CBA;

(2)求線段OM的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(8分)如圖,在10×10的正方形網格中,點A,B,C,D均在格點上,以點A為位似中心畫四邊形AB′C′D′,使它與四邊形ABCD位似,且相似比為2.

(1)在圖中畫出四邊形AB′C′D′;

(2)填空:AC′D′是 三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數ykx+b的圖象與反比例函數y的圖象交于A、B兩點.

1)利用圖中的條件,求反比例函數和一次函數的解析式.

2)求△AOB的面積.

3)根據圖象直接寫出使一次函數的值大于反比例函數的值的x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下表顯示了同學們用計算機模擬隨機投針實驗的某次實驗的結果.

投針次數n

1000

2000

3000

4000

5000

10000

20000

針與直線相交的次數m

454

970

1430

1912

2386

4769

9548

針與直線相交的頻率p

0.454

0.485

0.4767

0.478

0.4772

0.4769

0.4774

下面有三個推斷:

①投擲1000次時,針與直線相交的次數是454,針與直線相交的概率是0.454

②隨著實驗次數的增加,針與直線相交的頻率總在0.477附近,顯示出一定的穩(wěn)定性,可以估計針與直線相交的概率是0.477;

③若再次用計算機模擬此實驗,則當投擲次數為10000時,針與直線相交的頻率一定是0.4769

其中合理的推斷的序號是:_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在△ABC,∠BAC=90°,ABAC,D為直線BC上一動點(點D不與B、C重合),AD為直角邊在AD右側作等腰直角三角形ADE,且∠DAE=90°,連接CE

(1)如圖①,當點D在線段BC上時

BCCE的位置關系為   

BC、CDCE之間的數量關系為   

(2)如圖②,當點D在線段CB的延長線上時結論①,②是否仍然成立?若不成立請你寫出正確結論,并給予證明

(3)如圖③,當點D在線段BC的延長線上時,BC、CDCE之間的數量關系為   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若關于x的一元二次方程(m+1)x2﹣2x﹣1=0有兩個不相等的實數根,

(1)求m的取值范圍;

(2)若x=1是方程的一個根,求m的值和另一個根.

查看答案和解析>>

同步練習冊答案