【題目】在平面直角坐標系中,第一個正方形ABCD的位置如圖所示,點A的坐標為(2,0),點D的坐標為(0,4).延長CB交x軸于點A1,作第二個正方形A1B1C1C;延長C1B1交x軸于點A2,作第三個正方形A2B2C2C1,…,按這樣的規(guī)律進行下去,第2016個正方形的面積為_____.
【答案】20×
【解析】
先求出正方形ABCD的邊長和面積,再求出第一個正方形A1B1C1C的面積,得出規(guī)律,根據(jù)規(guī)律即可求出第2016個正方形的面積.
解:∵點A的坐標為(2,0),點D的坐標為(0,4),
∴OA=2,OD=4
∵∠AOD=90°,
∴AB=AD=,∠ODA+∠OAD=90°,
∵四邊形ABCD是正方形,
∴∠BAD=∠ABC=90°,S正方形ABCD=(2)2=20,
∴∠ABA1=90°,∠OAD+∠BAA1=90°,
∴∠ODA=∠BAA1,
∴△ABA1∽△DOA,
∴=,即=
∴BA1=,
∴CA1=,
∴正方形A1B1C1C的面積=( )2=20×()2…,第n個正方形的面積為20×()2n﹣2,
∴第2016個正方形的面積20×()4030.
故答案為:20×()4030.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.動點M從點B出發(fā),在BA邊上以每秒3cm的速度向定點A運動,同時動點N從點C出發(fā),在CB邊上以每秒2cm的速度向點B運動,且MG⊥BC,運動時間為t秒(0<t<),連接MN.
(1)用含t的式子表示MG;
(2)當t為何值時,四邊形ACNM的面積最小?并求出最小面積;
(3)若△BMN與△ABC相似,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在目前萬物互聯(lián)的時代,人工智能正掀起一場影響深刻的技術(shù)革命.谷歌、蘋果、BAT、華為……巨頭們紛紛布局人工智能。有人猜測,互聯(lián)網(wǎng)過后,我們可能會迎來機器人。教育從幼兒抓起,近年來我國國內(nèi)幼兒教育機器人發(fā)展趨勢迅猛,市場上出現(xiàn)了滿足各類要求的幼教機器人產(chǎn)品.“雙十一”當天,某品牌幼教機器人專賣店抓住機遇,對最暢銷的款幼教機器人進行促銷,一臺款幼教機器人的成本價為850元,標價為1300元.
(1)一臺款幼教機器人的價格最多降價多少元,才能使利潤率不低于30%;
(2)該專賣店以前每周共售出款幼教機器人100個,“雙十一”狂購夜中每臺款幼教機器人在標價的基礎(chǔ)上降價元,結(jié)果這天晚上賣出的款幼教機器人的數(shù)量比原來一周賣出的款幼教機器人的數(shù)量增加了,同時這天晚上的利潤比原來一周的利潤增加了,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+c與坐標軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.
(1)求拋物線的解析式;
(2)當點P運動到什么位置時,△PAB的面積有最大值?
(3)過點P作x軸的垂線,交線段AB于點D,再過點P做PE∥x軸交拋物線于點E,連結(jié)DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料:
小凱遇到這樣一個問題:如圖①,在四邊形ABCD中,對角線AC,BD相交于點O,AC=4,BD=6,∠AOB=30°,求四邊形ABCD的面積.小凱發(fā)現(xiàn),分別過點A,C作直線BD的垂線,垂足分別為E,F(xiàn),設(shè)AO為m,通過計算△ABD與△BCD的面積和可以使問題得到解決(如圖②).請回答:
(1)△ABD的面積為________(用含m的式子表示);
(2)求四邊形ABCD的面積.
參考小凱思考問題的方法,解決問題:
如圖③,在四邊形ABCD中,對角線AC,BD相交于點O,AC=a,BD=b,∠AOB=α(0°<α<90°),則四邊形ABCD的面積為________(用含a,b,α的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y1=與一次函數(shù)y2=k2x+b的圖象交于點A(1,8),B(-4,m)兩點.
(1)求k1,k2,b的值;
(2)求△AOB的面積;
(3)請直接寫出不等式x+b的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)的圖象與性質(zhì).小懷根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進行了探究.下面是小懷的探究過程,請補充完成:
(1)函數(shù)的自變量x的取值范圍是 ;
(2)列出y與x的幾組對應(yīng)值.請直接寫出m的值,m= ;
(3)請在平面直角坐標系xOy中,描出表中各對對應(yīng)值為坐標的點,并畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)的圖象,寫出函數(shù)的一條性質(zhì).
x | … | ﹣5 | ﹣4 | ﹣3 | ﹣2 | ﹣ | ﹣ | 0 | 1 | 2 | m | 4 | 5 | … |
y | … | 2 | 3 | ﹣1 | 0 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場按定價銷售某種電器時,每臺可獲利 48 元,按定價的九折銷售該電器 6 臺與將定價降低 30 元銷售該電器 9 臺所獲得的利潤相等,
(1)該電器每臺進價、定價各是多少元?
(2)按(1)的定價該商場一年可銷售這種電器 1000 臺.經(jīng)市場調(diào)查:每降低一元一年可多賣該種電器出 10 臺.如果商場想在一年中使該種電器獲利32670 元,那么商場應(yīng)按幾折銷售?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com