【題目】如圖,四邊形ABCD中,∠D=∠C90°,點ECD上,AE平分∠DAB,BE平分∠CBA,若AD4,AB6,求CB的長。

【答案】2.

【解析】

過點EEFAB于點F,根據(jù)角平分線的性質(zhì)可知DE=EF,EF=CE,根據(jù)AAS定理可得△ADE≌△AFE,故AD=AF=4,求出BF的長,同理可得△BCE≌△BFE,故可得出BC=BF,由此得出結(jié)論.

解:過點EEF⊥AB于點F,

∵AE平分∠DAB,BE平分∠CBA,

DAE=FAE,∠CBE=FBE,

△ADE△AEF中,

,

∴△ADE≌△AFEAAS),

∴ADAF4

∴BFABAF642

同理可得△BCE≌△BFE,

∴BCBF2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊ABC內(nèi)有一點D,AD=5,BD=6,CD=4,將ABDA點逆時針旋轉(zhuǎn),使ABAC重合,點D旋轉(zhuǎn)至點E.

(1)DE=_____;

(2)CDE的正切值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的面積為2016,E、FG、H分別是邊AB,CD的三等分點,則圖中陰影四邊形的面積為___;AB·BC=2016AD:AB=8:9,則陰影四邊形的周長為___.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知射線DEx軸和y軸分別交于點D30和點E0,4).動點C從點M5,0)出發(fā),以1個單位長度/秒的速度沿x軸向左作勻速運動,與此同時,動點P從點D出發(fā),也以1個單位長度/秒的速度沿射線DE的方向作勻速運動,設(shè)運動時間為t秒,

(1)請用含t的代數(shù)式分別表示出點C與點P的坐標;

(2)以點C為中心,個單位長度為半徑的⊙Cx軸交于A、B兩點(點A在點B的左側(cè)),連接PA、PB

C與射線DE有公共點時,求t的取值范圍;

PAB為等腰三角形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線的表達式為,A,B的坐標分別為

(1,0),(0,2),直線AB與直線相交于點P

(1)求直線AB的表達式;

(2)求點P的坐標;

(3)若直線上存在一點C,使得APC的面積是APO的面積的2倍,直接寫出點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1所示,在△ABC中,若ABAC,∠BAC120°,AB的垂直平分線交BC于點M,交AB于點EAC的垂直平分線交BC于點N,交AC于點F,連接AM、AN,試判斷△AMN的形狀,并證明你的結(jié)論.

2)如圖2所示,在△ABC中,若∠C45°,AB的垂直平分線交BC于點M,交AB于點EAC的垂直平分線交BC于點N,交AC于點F,連接AM、AN,若AC3,BC8,求MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩車分別從A. B兩地相向而行,甲車出發(fā)1小時后乙車出發(fā),并以各自速度勻速行駛,兩車相遇后依然按照原速度原方向各自行駛,如圖所示是甲乙兩車之間的距離S(千米)與甲車出發(fā)時間t(小時)之間的函數(shù)圖象,其中D點表示甲車到達B地,停止行駛。

(1)A、B兩地的距離___千米;乙車速度是___;a=___.

(2)乙出發(fā)多長時間后兩車相距330千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy內(nèi)A在直線y=3x上(點A在第一象限),

(1)求點A的坐標;

(2)過點AABx,垂足為點B,如果點E和點A都在反比例函數(shù)圖像上(點E在第一象限),過點EEFy,垂足為點F,如果求點E的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線y=﹣x+2與反比例函數(shù)y=的圖象有唯一公共點,若直線y=﹣x+b與反比例函數(shù)y=的圖象有2個公共點,則b的取值范圍是( 。

A. b>2 B. ﹣2<b<2 C. b>2或b<﹣2 D. b<﹣2

查看答案和解析>>

同步練習冊答案