【題目】某超市用5000元購進(jìn)某種干果銷售,由于銷售狀況良好,超市又調(diào)撥9000元資金購進(jìn)該種干果,但這次每千克的進(jìn)價(jià)比第一次的進(jìn)價(jià)提高了5元,購進(jìn)干果數(shù)量是第一次的1.5倍.

1)該種干果的第一次進(jìn)價(jià)是每千克多少元?

2)如果超市按每千克40元的價(jià)格出售,當(dāng)大部分干果售出后,余下的100千克按售價(jià)的6折售完,超市銷售這種干果共盈利多少元?

3)如果這兩批干果每千克售價(jià)相同,且全部售完后總利淘不低于25%,那么每千克干果的售價(jià)至少是多少元?

【答案】125元;(24400元;(335

【解析】

1)設(shè)第一次該干果的進(jìn)貨價(jià)是每千克x元,則第二次購進(jìn)干果的進(jìn)貨價(jià)是每千克(x+5)元,根據(jù)數(shù)量=總價(jià)÷單價(jià),再結(jié)合第一次購進(jìn)干果數(shù)量是試銷時(shí)的1.5倍,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論;

2)根據(jù)數(shù)量=總價(jià)÷單價(jià),可求出兩次購進(jìn)干果的數(shù)量,再由利潤=銷售收入﹣成本,即可求出結(jié)論;

3)設(shè)每千克干果售價(jià)y元,根據(jù)利潤=銷售收入﹣成本,即可得出關(guān)于y的一元一次不等式,解之取其最小值即可得出結(jié)論.

解:(1)設(shè)第一次該干果的進(jìn)貨價(jià)是每千克x元,則第二次購進(jìn)干果的進(jìn)貨價(jià)是每千克(x+5)元,

根據(jù)題意得:×1.5

解得:x25,

經(jīng)檢驗(yàn),x25是所列方程的解.

答:該種干果的第一次進(jìn)價(jià)是每千克25元.

2)第一次購進(jìn)該干果的數(shù)量是5000÷25200(千克),

再次購進(jìn)該干果的數(shù)量是200×1.5300(千克),

獲得的利潤為(200+300100×40+100×40×0.6500090004400(元).

答:超市銷售這種干果共盈利4400元;

3)設(shè)每千克干果售價(jià)y元,

根據(jù)題意得:500y50009000≥5000+9000×25%

解得:y≥35

答:每千克干果的售價(jià)至少是35元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題情境)

徐老師給愛好學(xué)習(xí)的小敏和小捷提出這樣一個(gè)問題:

如圖1,△ABC中,∠B=2∠C,AD∠BAC的平分線.求證:AB+BD=AC

小敏的證明思路是:在AC上截取AE=AB,連接DE.(如圖2

小捷的證明思路是:延長CB至點(diǎn)E,使BE=AB,連接AE. 可以證得:AE=DE(如圖3

請(qǐng)你任意選擇一種思路繼續(xù)完成下一步的證明.

(變式探究)

“AD∠BAC的平分線改成“ADBC邊上的高,其它條件不變.(如圖4),AB+BD=AC成立嗎?若成立,請(qǐng)證明;若不成立,寫出你的正確結(jié)論,并說明理由.

(遷移拓展)

△ABC中,∠B=2∠C. 求證:AC2=AB2+ABBC. (如圖5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校七年級(jí)學(xué)生的英語口語水平,隨機(jī)抽取該年級(jí)部分學(xué)生進(jìn)行英語口語測(cè)試,學(xué)生的測(cè)試成績(jī)按標(biāo)準(zhǔn)定為 A、B、C、D 四個(gè)等級(jí),并把測(cè)試成績(jī)繪成如圖所示的兩個(gè)統(tǒng)計(jì)圖表.

七年級(jí)英語口語測(cè)試成績(jī)統(tǒng)計(jì)表

成績(jī)x(分)

等級(jí)

人數(shù)

x≥90

A

12

75≤x<90

B

m

60≤x<75

C

n

x<60

D

9

請(qǐng)根據(jù)所給信息,解答下列問題:

(1)本次被抽取參加英語口語測(cè)試的學(xué)生共有多少人?

(2)求扇形統(tǒng)計(jì)圖中 C 級(jí)的圓心角度數(shù);

(3)若該校七年級(jí)共有學(xué)生 640人,根據(jù)抽樣結(jié)課,估計(jì)英語口語達(dá)到 B級(jí)以上(包括B 級(jí))的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,AC上的中線BD把三角形的周長分為24㎝和30㎝的兩個(gè)部分,求三角形的三邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某射箭隊(duì)準(zhǔn)備從王方、李明二人中選拔1人參加射箭比賽,在選拔賽中,兩人各射箭10次的成績(jī)(單位:環(huán)數(shù))如下:

次數(shù)

1

2

3

4

5

6

7

8

9

10

王方

7

10

9

8

6

9

9

7

10

10

李明

8

9

8

9

8

8

9

8

10

8

(1)根據(jù)以上數(shù)據(jù),將下面兩個(gè)表格補(bǔ)充完整:

王方10次射箭得分情況

環(huán)數(shù)

6

7

8

9

10

頻數(shù)

______

______

______

______

______

頻率

______

______

______

______

______

李明10次射箭得分情況

環(huán)數(shù)

6

7

8

9

10

頻數(shù)

______

______

______

______

______

頻率

______

______

______

______

______

(2)分別求出兩人10次射箭得分的平均數(shù);

(3)從兩人成績(jī)的穩(wěn)定性角度分析,應(yīng)選派誰參加比賽合適.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在菱形ABCD,∠ABC=60°,點(diǎn)F為邊AD上一點(diǎn),連接BF交對(duì)角線AC于點(diǎn)G

(1)如圖1,已知CFADF,菱形的邊長為6,求線段FG的長度;

(2)如圖2,已知點(diǎn)E為邊AB上一點(diǎn),連接CE交線段BF于點(diǎn)H且滿足FHC=60°,CH=2BH求證AHCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+4x軸、y軸分別交于點(diǎn)A、點(diǎn)B,點(diǎn)Dy軸的負(fù)半軸上,若將DAB沿直線AD折疊,點(diǎn)B恰好落在x軸正半軸上的點(diǎn)C處.

(1)求AB的長和點(diǎn)C的坐標(biāo);

(2)求直線CD的解析式;

(3)y軸上是否存在一點(diǎn)P,使得SPAB=,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的口袋里裝有分別標(biāo)有漢字”、“”、“”、“的四個(gè)小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻.

(1)若從中任取一個(gè)球,球上的漢字剛好是的概率為__________.

(2)從中任取一球,不放回,再從中任取一球,請(qǐng)用樹狀圖或列表的方法,求取出的兩個(gè)球上的漢字能組成歷城的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《算法統(tǒng)宗》中有一道蕩秋干的問題,其譯文為:有一架秋千,當(dāng)它靜止時(shí),踏板上一點(diǎn)A離地1尺,將它往前推送10(水平距離)時(shí),點(diǎn)A對(duì)應(yīng)的點(diǎn)B就和某人一樣高,若此人的身高為5尺,秋干的繩索始終拉得很直,試問繩素有多長?根據(jù)上述條件,秋干繩索長為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案