【題目】如圖,在中,, 是邊上一動點(不與重合),=于點,,則線段的最大值為___

【答案】

【解析】

AGBCG,如圖,根據(jù)等腰三角形的性質(zhì)得BG=CG,再利用余弦的定義計算出BG=8,則BC=2BG=16,設BD=x,則CD=16-x,證明ABD∽△DCE,利用相似比可表示出,然后利用二次函數(shù)的性質(zhì)求CE的最大值.

AGBCG,如圖,

AB=AC,

BG=CG,

∵∠ADE=B=α,

cosB=cosα=

BG=×10=8,

BC=2BG=16,

BD=x,則CD=16-x,

∵∠ADC=B+BAD,即α+CDE=B+BAD,

∴∠CDE=BAD,

而∠B=C,

∴△ABD∽△DCE,

,即,

,

x=8時,CE最大,最大值為6.4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=x+3與拋物線交于A、B兩點,點Ax軸上,點B的橫坐標為.動點P在拋物線上運動(不與點A、B重合),過點Py軸的平行線,交直線AB于點Q.當PQ不與y軸重合時,以PQ為邊作正方形PQMN,使MNy軸在PQ的同側,連結PM.設點P的橫坐標為m

1)求b、c的值.

2)當點N落在直線AB上時,直接寫出m的取值范圍.

3)當點PA、B兩點之間的拋物線上運動時,設正方形PQMN的周長為C,求Cm之間的函數(shù)關系式,并寫出Cm增大而增大時m的取值范圍.

4)當PQM與坐標軸有2個公共點時,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一中和二中舉行數(shù)學知識競賽,參賽學生的競賽得分統(tǒng)計結果如下表:

學校

參賽人數(shù)

平均數(shù)

中位數(shù)

方差

一中

45

83

86

82

二中

45

83

84

135

某同學分析上表后得到如下結論:.

①一中和二中學生的平均成績相同;

②一中優(yōu)秀的人數(shù)多于二中優(yōu)秀的人數(shù)(競賽得分85分為優(yōu)秀);

③二中成績的波動比一中小.

上述結論中正確的是___________. (填寫所有正確結論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線相離,于點,,相交于點,相切于點,的延長線交直線于點.

1)試判斷線段的數(shù)量關系,并說明理由;

2)若,求的半徑和線段的長;

3)若在上存在點,使是以為底邊的等腰三角形,求的半徑的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O上的點,C是⊙O上的點,點DAB的延長線上,∠BCD=BAC.

(1)求證:CD是⊙O的切線;

(2)若∠D=30°,BD=2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+c上部分點的橫坐標x,縱坐標y的對應值如下表:

x


-2

-1

0

1

2


y


0

4

6

6

4


觀察上表,得出下面結論:拋物線與x軸的一個交點為(3,0); 函數(shù)y=ax2+bx+C的最大值為6;拋物線的對稱軸是x=;在對稱軸左側,yx增大而增大.其中正確有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水產(chǎn)養(yǎng)殖戶進行小龍蝦養(yǎng)殖. 已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,日銷售量與時間第天之間的函數(shù)關系式為,為整數(shù)),銷售單價(元/)與時間第天之間滿足一次函數(shù)關系如下表:

時間第

1

2

3

80

銷售單價(元/

49. 5

49

48. 5

10

1)寫出銷售單價(元/)與時間第天之間的函數(shù)關系式;

2)在整個銷售旺季的80天里,哪一天的日銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】初三年級的一場籃球比賽中,如圖隊員甲正在投籃,已知球出手時離地面高m,與籃圈中心的水平距離為7m,當球出手后水平距離為4m時到達最大高度4m,設籃球運行的軌跡為拋物線,籃圈距地面3m

1)建立如圖所示的平面直角坐標系,求拋物線的解析式并判斷此球能否準確投中?

2)此時,若對方隊員乙在甲前面1m處跳起蓋帽攔截,已知乙的最大摸高為3.1m,那么他能否獲得成功?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】周末,小華和小亮想用所學的數(shù)學知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標桿BC,再在AB的延長線上選擇點D豎起標桿DE,使得點E與點C、A共線.

已知:CBAD,EDAD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據(jù)相關測量信息,求河寬AB

查看答案和解析>>

同步練習冊答案