【題目】如圖是一個被平均分成等份的轉(zhuǎn)盤,每一個扇形中都標(biāo)有相應(yīng)的數(shù)字,甲乙兩人分別轉(zhuǎn)動轉(zhuǎn)盤,設(shè)甲轉(zhuǎn)動轉(zhuǎn)盤后指針?biāo)竻^(qū)域內(nèi)的數(shù)字為,乙轉(zhuǎn)動轉(zhuǎn)盤后指針?biāo)竻^(qū)域內(nèi)的數(shù)字為(當(dāng)指針在邊界上時,重轉(zhuǎn)一次,直到指向一個區(qū)域為止).
直接寫出甲轉(zhuǎn)動轉(zhuǎn)盤后所指區(qū)域內(nèi)的數(shù)字為負(fù)數(shù)的概率;
用樹狀圖或列表法,求出點落在第二象限內(nèi)的概率.
【答案】(1);(2).
【解析】
(1)根據(jù)古典概率的知識,利用概率公式即可求得答案;
(2)根據(jù)題意列出表格,然后根據(jù)表格即可求得所有等可能的結(jié)果與點(x,y)落在第二象限內(nèi)的情況,然后利用概率公式求解即可求得答案.
解:∵一共有種等可能的結(jié)果,甲轉(zhuǎn)動轉(zhuǎn)盤后所指區(qū)域內(nèi)的數(shù)字為負(fù)數(shù)的有:,共種情況,
∴甲轉(zhuǎn)動轉(zhuǎn)盤后所指區(qū)域內(nèi)的數(shù)字為負(fù)數(shù)的概率為:;
根據(jù)題意,列表得:
甲 乙 | ||||||
∴點的坐標(biāo)一共有種等可能的結(jié)果,且每種結(jié)果發(fā)生的可能性相等,其中點落在第二象限的結(jié)果共有種,
∴點落在第二象限內(nèi)的概率為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過原點的拋物線y=﹣x2+2mx(m>0)與x軸的另一個交點為A,過點P(1,m)作直線PA⊥x軸于點M,交拋物線于點B.記點B關(guān)于拋物線對稱軸的對稱點為C(點B、C不重合),連接CB、CP.
(I)當(dāng)m=3時,求點A的坐標(biāo)及BC的長;
(II)當(dāng)m>1時,連接CA,若CA⊥CP,求m的值;
(III)過點P作PE⊥PC,且PE=PC,當(dāng)點E落在坐標(biāo)軸上時,求m的值,并確定相對應(yīng)的點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,扇形OMN的圓心角為45°,正方形A1B1C1A2的邊長為2,頂點A1,A2在線段OM上,頂點B1在弧MN上,頂點C1在線段ON上,在邊A2C1上取點B2,以A2B2為邊長繼續(xù)作正方形A2B2C2A3,使得點C2在線段ON上,點A3在線段OM上,……,依次規(guī)律,繼續(xù)作正方形,則A2018M=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).
(1)求點B,C的坐標(biāo);
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明袋子中有1個紅球和n個白球,這些球除顏色外無其他差別.
(1)當(dāng)n=l時,從袋中隨機摸出1個球,摸到紅球與摸到白球的可能性是否相同? (填“相同”或“不相同”)
(2)從袋中隨機摸出1個球,記錄其顏色,然后放回,大量重復(fù)該實驗,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定于0.25,則n的值是 ;
(3)當(dāng)n=2時,請用列表或畫樹狀圖的方法求兩次摸出的球顏色不同的概率(摸出一個球,不放回,然后再摸一個球).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點E到AD,AB,BC三邊的距離都相等,則∠AEB( 。
A.是銳角B.是直角C.是鈍角D.度數(shù)不確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,點D是BC的中點,點E在AD上,連接BE、CE.
(1)求證:BE=CE
(2)如圖2,若BE的延長線交AC于點F,且BF ⊥AC,垂足為F,原題設(shè)其它條件不變.求證:∠CAD=∠CBF
(3)在(2)的條件下,若∠BAC=45,判斷△CFE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x軸交于點A,與y軸交于點C.拋物線經(jīng)過A,C兩點,且與x軸交于另一點B(點B在點A右側(cè)).
(1)求拋物線的解析式及點B坐標(biāo);
(2)若點M是線段BC上的一動點,過點M的直線EF平行y軸交x軸于點F,交拋物線于點E.求ME長的最大值;
(3)試探究當(dāng)ME取最大值時,在拋物線上、x軸下方是否存在點P,使以M,F(xiàn),B,P為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com