【題目】為了發(fā)展鄉(xiāng)村旅游,建設(shè)美麗從化,某中學(xué)七年級(jí)一班同學(xué)都積極參加了植樹活動(dòng),今年四月份該班同學(xué)的植樹情況部分如圖所示,且植樹2株的人數(shù)占32%.
(1)求該班的總?cè)藬?shù)、植樹株數(shù)的眾數(shù),并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)若將該班同學(xué)的植樹人數(shù)所占比例繪制成扇形統(tǒng)計(jì)圖時(shí),求“植樹3株”對(duì)應(yīng)扇形的圓心角的度數(shù);
(3)求從該班參加植樹的學(xué)生中任意抽取一名,其植樹株數(shù)超過該班植樹株數(shù)的平均數(shù)的概率.
【答案】(1)該班的總?cè)藬?shù)50人;植樹株數(shù)的眾數(shù)是2;補(bǔ)圖見解析;(2)100.8度;(3)植樹株數(shù)超過該班植樹株數(shù)平均數(shù)的概率是0.5.
【解析】分析:(1)植2株的有16人,所占百分比為32%,則可求出其總?cè)藬?shù),根據(jù)計(jì)算結(jié)果結(jié)合圖表找出眾數(shù);結(jié)合(1)的數(shù)據(jù)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)先根據(jù)“植樹3株”的人數(shù)為50-9-16-7-4=14(人),且所占總?cè)藬?shù)比例:14÷50=28%,即可得到“植樹3株”對(duì)應(yīng)扇形的圓心角的度數(shù);(3)根據(jù)題意,求得其平均數(shù)為2.62,超過平均數(shù)的為25人,根據(jù)概率公式進(jìn)行計(jì)算即可.
本題解析:
(1)該班的總?cè)藬?shù):16÷32%=50(人);
因?yàn)橹?/span>3株的人數(shù)為50﹣9﹣16﹣7﹣4=14,數(shù)據(jù)2出現(xiàn)了16次,出現(xiàn)次數(shù)最多,
所以植樹株數(shù)的眾數(shù)是2;
條形統(tǒng)計(jì)圖補(bǔ)充如圖所示.
(2)因?yàn)橹?/span>3株的人數(shù)為50﹣9﹣16﹣7﹣4=14(人),且所占總?cè)藬?shù)比例:14÷50=28%,
∴“植樹3株”對(duì)應(yīng)扇形的圓心角的度數(shù)為:28%×360=100.8(度);
(3)∵該班植樹株數(shù)的平均數(shù)=(9×1+16×2+14×3+7×4+4×5)÷50=2.62,
植樹株數(shù)超過該班植樹株數(shù)平均數(shù)的人數(shù)有:14+7+4=25(人),
∴概率==0.5.
答:植樹株數(shù)超過該班植樹株數(shù)平均數(shù)的概率是0.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)由大小相同的小立方塊搭成的幾何體如圖1,請(qǐng)?jiān)趫D2的方格中畫出該幾何體的俯視圖和左視圖.
(2)用小立方體搭一個(gè)幾何體,使得它的俯視圖和左視圖與你在方格中所畫的一致,則這樣的幾何體最少要 個(gè)小立方塊,最多要 個(gè)小立方塊.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,AB=AC,∠ABC的平分線BD交AC于點(diǎn)D,CE⊥BD,交BD的延長(zhǎng)線于點(diǎn)E,若BD=6,則CE的值為( 。
A. 4B. 3.5C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有兩個(gè)紙箱,每個(gè)紙箱內(nèi)各裝有4個(gè)材質(zhì)、大小都相同的乒乓球,其中一個(gè)紙箱內(nèi)4個(gè)小球上分別寫有1、2、3、4這4個(gè)數(shù),另一個(gè)紙箱內(nèi)4個(gè)小球上分別寫有5、6、7、8這4個(gè)數(shù),甲、乙兩人商定了一個(gè)游戲,規(guī)則是:從這兩個(gè)紙箱中各隨機(jī)摸出一個(gè)小球,然后把兩個(gè)小球上的數(shù)字相乘,若得到的積是2的倍數(shù),則甲得1分,若得到積是3的倍數(shù),則乙得2分.完成一次游戲后,將球分別放回各自的紙箱,搖勻后進(jìn)行下一次游戲,最后得分高者勝出.。
(1)請(qǐng)你通過列表(或樹狀圖)分別計(jì)算乘積是2的倍數(shù)和3的倍數(shù)的概率;
(2)你認(rèn)為這個(gè)游戲公平嗎?為什么?若你認(rèn)為不公平,請(qǐng)你修改得分規(guī)則,使游戲?qū)﹄p方公平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線a,b,c表示交叉的三條公路,現(xiàn)要建一貨物中轉(zhuǎn)站,要求它到這三條公路的距離相等,則可供選擇的站址最多有
A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=( 。
A. 75° B. 80° C. 85° D. 90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①是一個(gè)水平放置的小正方體木塊,圖②、圖③是由這樣的小正方體木塊疊放而成,按照這樣的規(guī)律繼續(xù)疊放下去,第四個(gè)疊放的圖形時(shí),小正方體木塊總數(shù)應(yīng)是___塊;第七個(gè)疊放的圖形時(shí),小正方體木塊總數(shù)應(yīng)是____塊.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 ,等腰三角形PEF中,PE=PF,點(diǎn)O在EF邊上(異于點(diǎn)E,F),點(diǎn)Q是PO延長(zhǎng)線上一點(diǎn),若△EFQ為等腰三角形,則稱點(diǎn)Q為△PEF的“同類點(diǎn)”.
(1)如圖,BG平分∠MBN,過射線BM上的點(diǎn)A作AD∥BN,交射線BG于點(diǎn)D,點(diǎn)O為BD上一點(diǎn),連接AO并延長(zhǎng)交射線BN于點(diǎn)C,若∠BAD=100°,∠BCD=70°,求證:點(diǎn)C是△ABD的“同類點(diǎn)”;
(2)如圖③,在5×5的正方形網(wǎng)格圖上有一個(gè)△ABC,點(diǎn)A,B,C均在格點(diǎn)上,在給出的網(wǎng)格圖上有一個(gè)格點(diǎn)D,使得點(diǎn)D為△ABC的“同類點(diǎn)”,則這樣的點(diǎn)D共有__________個(gè);
(3)凸四邊形ABCD中,∠ABC=110°,DA=AB=BC,對(duì)角線AC,BD交于點(diǎn)O,且BD≠CD,若點(diǎn)C為△ABD的“同類點(diǎn)”,請(qǐng)直接寫出滿足條件的∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上,兩點(diǎn)對(duì)應(yīng)的有理數(shù)分別為和12,點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),點(diǎn)同時(shí)從點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)求經(jīng)過2秒后,數(shù)軸點(diǎn)、分別表示的數(shù);
(2)當(dāng)時(shí),求的值;
(3)在運(yùn)動(dòng)過程中是否存在時(shí)間使,若存在,請(qǐng)求出此時(shí)的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com