任意剪一個三角形紙片,如圖中的△ABC,設它的一個銳角為∠A,首先利用對折的方法得到高AN,然后按圖中所示的方法分別將含有∠B、∠C的部分向里折,找出AB、AC精英家教網(wǎng)的中點D、E,同時得到兩條折痕DF、EG,分別沿折痕DF、EG剪下圖中的三角形①、②,并按圖中箭頭所指的方向分別旋轉180°.
(1)你能拼成一個什么樣的四邊形并說明你的理由;
(2)請你利用這個圖形,證明三角形的面積公式:S=
12
底×高.
分析:(1)易得∠F=∠H=∠M=90°,∴四邊形HFGM是矩形;
(2)用長×寬表示出矩形的面積,也就不是出了原來大三角形的面積,看與大三角形的底邊與高之間的聯(lián)系.
解答:解:(1)由折疊可得∠DFN=
1
2
∠BFN=90°,那么∠H=90°,
同理可得∠NGE=∠M=90°,
∴四邊形HFGM是矩形.

(2)∵△BDF的面積=△ADH的面積,△CEG的面積=△AEM的面積,
∴S=FG×MG=FG×AN=
1
2
BC×AN.
點評:用到的知識點為:直角三角形斜邊上的中線等于斜邊的一半;有3個角是直角的四邊形是矩形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

(2011•紹興縣模擬)閱讀材料:
小明在做課本閱讀材料中的一個拼圖游戲“對于任意剪一個三角形紙片,把這個三角形紙片剪2刀,分成3塊,再把它們拼成一個長方形.”時遇到了困難,經(jīng)提示他想到從特殊到一般的數(shù)學思想,于是他先剪了一個直角三角形紙片,把這個直角三角形紙片沿中位線剪1刀,分成2塊(如圖1),很快就拼成了一個與原三角形面積相等的矩形.
解決問題:(請在圖中畫出分割線及拼成的圖形)

(1)請你在圖2中用類似的方法把三角形剪一刀分成2塊,然后拼成平行四邊形;
(2)請你在圖3中把三角形剪兩刀分成3塊,然后拼成矩形;
(3)應用拓展:
如圖4是一個正方形紙片,把這個正方形紙片剪2刀,分成3塊,再拼成一個與原正方形面積相等的三角形,且該三角形既不是等腰三角形,也不是直角三角形(給出兩種不同的方案).

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年浙江省蘭溪市九年級下學期獨立作業(yè)數(shù)學卷(解析版) 題型:解答題

閱讀材料:小明在做課本閱讀材料中的一個拼圖游戲“對于任意剪一個三角形紙片,把這個三角形紙片剪2刀,分成3塊,再把它們拼成一個長方形.”時遇到了困難,經(jīng)提示他想到從特殊到一般的數(shù)學思想,于是他先剪了一個直角三角形紙片,把這個直角三角形紙片沿中位線剪1刀,分成2塊(如圖1),很快就拼成了一個與原三角形面積相等的矩形.

解決問題:(請在圖中畫出分割線及拼成的圖形)

(1)請你在圖2中用類似的方法把三角形剪一刀分成2塊,然后拼成平行四邊形;

(2)請你在圖3中把三角形剪兩刀分成3塊,然后拼成矩形;

(3)應用拓展:如圖4是一個正方形紙片,把這個正方形紙片剪2刀,分成3塊,再拼成一個與原正方形面積相等的三角形,且該三角形既不是等腰三角形,也不是直角三角形(給出兩種不同的方案).

 

查看答案和解析>>

科目:初中數(shù)學 來源:柳州 題型:解答題

任意剪一個三角形紙片,如圖中的△ABC,設它的一個銳角為∠A,首先利用對折的方法得到高AN,然后按圖中所示的方法分別將含有∠B、∠C的部分向里折,找出AB、AC
精英家教網(wǎng)
的中點D、E,同時得到兩條折痕DF、EG,分別沿折痕DF、EG剪下圖中的三角形①、②,并按圖中箭頭所指的方向分別旋轉180°.
(1)你能拼成一個什么樣的四邊形并說明你的理由;
(2)請你利用這個圖形,證明三角形的面積公式:S=
1
2
底×高.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年浙江省杭州市三墩中學中考數(shù)學模擬試卷(3月份)(解析版) 題型:解答題

閱讀材料:
小明在做課本閱讀材料中的一個拼圖游戲“對于任意剪一個三角形紙片,把這個三角形紙片剪2刀,分成3塊,再把它們拼成一個長方形.”時遇到了困難,經(jīng)提示他想到從特殊到一般的數(shù)學思想,于是他先剪了一個直角三角形紙片,把這個直角三角形紙片沿中位線剪1刀,分成2塊(如圖1),很快就拼成了一個與原三角形面積相等的矩形.
解決問題:(請在圖中畫出分割線及拼成的圖形)

(1)請你在圖2中用類似的方法把三角形剪一刀分成2塊,然后拼成平行四邊形;
(2)請你在圖3中把三角形剪兩刀分成3塊,然后拼成矩形;
(3)應用拓展:
如圖4是一個正方形紙片,把這個正方形紙片剪2刀,分成3塊,再拼成一個與原正方形面積相等的三角形,且該三角形既不是等腰三角形,也不是直角三角形(給出兩種不同的方案).

查看答案和解析>>

同步練習冊答案