【題目】某廠(chǎng)按用戶(hù)的月需求量()完成一種產(chǎn)品的生產(chǎn),其中.每件的售價(jià)為18萬(wàn)元,每件的成本(萬(wàn)元)是基礎(chǔ)價(jià)與浮動(dòng)價(jià)的和,其中基礎(chǔ)價(jià)保持不變,浮動(dòng)價(jià)與月需求量()成反比.經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn),月需求量與月份(為整數(shù),)符合關(guān)系式(為常數(shù)),且得到了表中的數(shù)據(jù).

月份()

1

2

成本(萬(wàn)元/件)

11

12

需求量(件/月)

120

100

(1)滿(mǎn)足的關(guān)系式,請(qǐng)說(shuō)明一件產(chǎn)品的利潤(rùn)能否是12萬(wàn)元;

(2),并推斷是否存在某個(gè)月既無(wú)盈利也不虧損;

(3)在這一年12個(gè)月中,若第個(gè)月和第個(gè)月的利潤(rùn)相差最大,求

【答案】(1),不可能(2)存在;(3)1或11.

【解析】

試題分析:(1)根據(jù)每件的成本y(萬(wàn)元)是基礎(chǔ)價(jià)與浮動(dòng)價(jià)的和,其中基礎(chǔ)價(jià)保持不變,浮動(dòng)價(jià)與月需求量x()成反比,結(jié)合表格,用待定系數(shù)求y與x之間的函數(shù)關(guān)系式,再列方程解,檢驗(yàn)所得結(jié)果是還符合題意;(2)表格中的n,對(duì)應(yīng)的x,代入到,求出k,根據(jù)某個(gè)月既無(wú)盈利也不虧損得到一個(gè)關(guān)于n的一元二次方程,判斷根的情況;(3)含m代數(shù)式表示出第m個(gè)月,第(m+1)個(gè)月的利潤(rùn),再對(duì)它們的差的情況討論.

試題解析:(1)題意設(shè),由表中數(shù)據(jù),得

解得.

題意,若.

x>0,.

可能.

(2)n=1,x=120代入,得

120=2-2k+9k+27.解得k=13.

將n=2,x=100代入符合.

k=13.

題意,得18=6+,求得x=50.

∴50=,.

,∴方程無(wú)實(shí)數(shù)根.

∴不存在.

(3)m個(gè)月利潤(rùn)為w==;

(m+1)個(gè)月的利潤(rùn)為

W′=.

W≥W,W-W′=48(6-m),m取最小1,W-W′=240最大.

WW′,W′-W=48(m-6),m+112,m取最大11,W′-W=240最大.

∴m=1或11.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在△ABC中,∠B=∠C,DE分別是線(xiàn)段BC,AC上的一點(diǎn),且ADAE,

1)如圖1,若∠BAC90°,DBC中點(diǎn),則∠2的度數(shù)為_____;

2)借助圖2探究并直接寫(xiě)出∠1和∠2的數(shù)量關(guān)系_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在圓O中,∠ACB=∠BDC=60°,

(1)求∠BAC的度數(shù);

(2)連接AD,求證:DB=AD+DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為落實(shí)綠水青山就是金山銀山的發(fā)展理念,某市政部門(mén)招標(biāo)一工程隊(duì)負(fù)責(zé)在山腳下修建一座水庫(kù)的土方施工任務(wù)該工程隊(duì)有兩種型號(hào)的挖掘機(jī),已知3臺(tái)型和5臺(tái)型挖掘機(jī)同時(shí)施工一小時(shí)挖土165立方米;4臺(tái)型和7臺(tái)型挖掘機(jī)同時(shí)施工一小時(shí)挖土225立方米每臺(tái)型挖掘機(jī)一小時(shí)的施工費(fèi)用為300,每臺(tái)型挖掘機(jī)一小時(shí)的施工費(fèi)用為180

(1)分別求每臺(tái), 型挖掘機(jī)一小時(shí)挖土多少立方米?

(2)若不同數(shù)量的型和型挖掘機(jī)共12臺(tái)同時(shí)施工4小時(shí),至少完成1080立方米的挖土量,且總費(fèi)用不超過(guò)12960問(wèn)施工時(shí)有哪幾種調(diào)配方案,并指出哪種調(diào)配方案的施工費(fèi)用最低,最低費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明從家出發(fā),沿一條直道跑步,經(jīng)過(guò)一段時(shí)間原路返回,剛好在第16分鐘回到家中.設(shè)小明出發(fā)第t分鐘的速度為v/分,離家的距離為s米.vt之間的部分圖象、st之間的部分圖象分別如圖1與圖2(圖象沒(méi)畫(huà)完整,其中圖中的空心圈表示不包含這一點(diǎn)),則當(dāng)小明離家600米時(shí),所用的時(shí)間是( 。┓昼姡

A. 4.5B. 8.25C. 4.5 8.25D. 4.5 8.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在城市改造中,市政府欲在一條人工河上架一座橋,河的兩岸PQMN平行,河岸MN上有A、B兩個(gè)相距50米的涼亭,小亮在河對(duì)岸D處測(cè)得∠ADP=60°,然后沿河岸走了110米到達(dá)C處,測(cè)得∠BCP=30°,求這條河的寬.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方形網(wǎng)格中,ABC為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上)

(1)把ABC沿BA方向平移后,點(diǎn)A移到點(diǎn)A1,在網(wǎng)格中畫(huà)出平移后得到的A1B1C1;

(2)把A1B1C1繞點(diǎn)A1按逆時(shí)針?lè)较蛐D(zhuǎn)90°,在網(wǎng)格中畫(huà)出旋轉(zhuǎn)后的A1B2C2;

(3)如果網(wǎng)格中小正方形的邊長(zhǎng)為1,求點(diǎn)B經(jīng)過(guò)(1)、(2)變換的路徑總長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某批發(fā)商以每件50元的價(jià)格購(gòu)進(jìn)400T恤.若以單價(jià)70元銷(xiāo)售,預(yù)計(jì)可售出200件.批發(fā)商的銷(xiāo)售策略是:第一個(gè)月為增加銷(xiāo)售量,降價(jià)銷(xiāo)售,經(jīng)過(guò)市場(chǎng)調(diào)查,單價(jià)每降低0.5,可多售出5,但最低單價(jià)不低于購(gòu)進(jìn)的價(jià)格;第一個(gè)月結(jié)束后,將剩余的T恤一次性清倉(cāng)銷(xiāo)售,清倉(cāng)時(shí)單價(jià)為40元.設(shè)第一個(gè)月單價(jià)降低x元.

(1)根據(jù)題意,完成下表:

每件T恤的利潤(rùn)(元)

銷(xiāo)售量(件)

第一個(gè)月

清倉(cāng)時(shí)

(2)T恤的銷(xiāo)售單價(jià)定為多少元時(shí),該批發(fā)商可獲得最大利潤(rùn)?最大利潤(rùn)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線(xiàn)y=ax2+bx+3x軸于B、C兩點(diǎn)(點(diǎn)B在左,點(diǎn)C在右),交y軸于點(diǎn)A,且OA=OC,B(﹣1,0).

(1)求此拋物線(xiàn)的解析式;

(2)如圖2,點(diǎn)D為拋物線(xiàn)的頂點(diǎn),連接CD,點(diǎn)P是拋物線(xiàn)上一動(dòng)點(diǎn),且在C、D兩點(diǎn)之間運(yùn)動(dòng),過(guò)點(diǎn)PPEy軸交線(xiàn)段CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為t,線(xiàn)段PE長(zhǎng)為d,寫(xiě)出dt的關(guān)系式(不要求寫(xiě)出自變量t的取值范圍);

(3)如圖3,在(2)的條件下,連接BD,在BD上有一動(dòng)點(diǎn)Q,且DQ=CE,連接EQ,當(dāng)∠BQE+DEQ=90°時(shí),求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案