如圖,已知E是?ABCD中BC邊的中點(diǎn),連接AE并延長(zhǎng)AE交DC的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求證:△ABE≌△FCE.
(2)連接AC.BF,若∠AEC=2∠ABC,求證:四邊形ABFC為矩形.
(1)、(2)證明見(jiàn)解析
證明:(1)∵四邊形ABCD為平行四邊形,∴AB∥DC!唷螦BE=∠ECF。
又∵E為BC的中點(diǎn),∴BE=CE。
在△ABE和△FCE中,∵∠ABE=∠FCE,BE=CE,∠AEB=∠FEC,
∴△ABE≌△FCE(ASA)。
(2)∵△ABE≌△FCE,∴AB=CF。
又AB∥CF,∴四邊形ABFC為平行四邊形!郆E=EC,AE=EF。
又∵∠AEC=2∠ABC,且∠AEC為△ABE的外角,∴∠AEC=∠ABC+∠EAB。
∴∠ABC=∠EAB,∴AE=BE!郃E+EF=BE+EC,即AF=BC。
∴四邊形ABFC為矩形。
(1)由ABCD為平行四邊形,根據(jù)平行四邊形的對(duì)邊平行得到AB與DC平行,根據(jù)兩直線(xiàn)平行內(nèi)錯(cuò)角相等得到一對(duì)角相等,由E為BC的中點(diǎn),得到兩條線(xiàn)段相等,再由對(duì)應(yīng)角相等,利用ASA可得出三角形ABE與三角形FCE全等。
(2)由△ABE≌△FCE,根據(jù)全等三角形的對(duì)應(yīng)邊相等得到AB=CF;再由AB與CF平行,根據(jù)一組對(duì)邊平行且相等的四邊形為平行四邊形得到ABFC為平行四邊形,根據(jù)平行四邊形的對(duì)角線(xiàn)互相平分得到AE=EF,BE=EC;再由∠AEC為三角形ABE的外角,利用外角的性質(zhì)得到∠AEB等于∠ABE+∠EAB,再由∠AEC=2∠ABC,得到∠ABE=∠EAB,利用等角對(duì)等邊可得出AE=BE,可得出AF=BC,利用對(duì)角線(xiàn)相等的平行四邊形為矩形可得出ABFC為矩形。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD的對(duì)角線(xiàn)AC、BD交于點(diǎn)O,BE⊥AC于E,DF⊥AC于
F,點(diǎn)O既是AC的中點(diǎn),又是EF的中點(diǎn).

(1)求證:△BOE≌△DOF;
(2)若OA=BD,則四邊形ABCD是什么特殊四邊形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知平行四邊形ABCD,過(guò)A作AM⊥BC于M,交BD于E,過(guò)C作CN⊥AD于N,交BD于F,連結(jié)AF、CE.
(1)求證:四邊形AECF為平行四邊形;
(2)當(dāng)AECF為菱形,M點(diǎn)為BC的中點(diǎn)時(shí),求AB:AE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在四邊形ABCD中,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,其中AC+BD=28,CD=10.
(1)若四邊形ABCD是平行四邊形,則△OCD的周長(zhǎng)為            ;
(2)若四邊形ABCD是菱形,則菱形的面積為       ;
(3)若四邊形ABCD是矩形,則AD的長(zhǎng)為        .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:菱形ABCD的兩條對(duì)角線(xiàn)AC與BD相交于點(diǎn)O,且AC=6,BD=8,求菱形的周長(zhǎng)和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知Rt△ABC,AB=AC,∠ABC的平分線(xiàn)BD交AC于點(diǎn)D,BD的垂直平分線(xiàn)分別交AB,BC于點(diǎn)E、F,CD=CG。
(1)請(qǐng)以圖中的點(diǎn)為頂點(diǎn)(不增加其他的點(diǎn))分別構(gòu)造兩個(gè)菱形和兩個(gè)等腰梯形。那么,構(gòu)成菱形的四個(gè)頂點(diǎn)是__________或__________;構(gòu)成等腰梯形的四個(gè)頂點(diǎn)是_____________或_____________.
(2)請(qǐng)你選擇其中一個(gè)圖形加以證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,菱形ABCD中,AB=2,∠A=120°,點(diǎn)P,Q,K分別為線(xiàn)段BC,CD,BD上的任意一點(diǎn),則PK+QK的最小值為【   】

  
A.1B.C.2 D.+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在梯形ABCD中,AB=AD=CD,∠DBC=25o,則∠BDC=       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

圖a是矩形紙片,∠SAB=20°,將紙片沿AB折疊成圖b,再沿BN折疊成圖c,則圖c中的∠TBA的度數(shù)是(     )
A.120°B.140°C.150°D.160°

查看答案和解析>>

同步練習(xí)冊(cè)答案