【題目】如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,兩線(xiàn)相交于F點(diǎn).

(1)若∠BAC=60°,∠C=70°,求∠AFB的大。

(2)若D是BC的中點(diǎn),∠ABE=30°,求證:△ABC是等邊三角形.

【答案】(1)115°;(2)證明見(jiàn)解析

【解析】

(1)根據(jù)∠ABF=FBD+BDF,想辦法求出∠FBD,BDF即可;

(2)只要證明AB=AC,ABC=60°即可;

(1)∵∠BAC=60°,C=70°,

∴∠ABC=180°﹣60°﹣70°=50°,

BE平分∠ABC,

∴∠FBD=ABC=25°,

ADBC,

∴∠BDF=90°,

∴∠AFB=FBD+BDF=115°.

(2)證明:∵∠ABE=30°,BE平分∠ABC,

∴∠ABC=60°,

BD=DC,ADBC,

AB=AC,

∴△ABC是等邊三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各題
(1)計(jì)算: ﹣( 1+(π﹣ 0﹣(﹣1)100;
(2)已知|a+1|+(b﹣3)2=0,求代數(shù)式( )÷ 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩同學(xué)的家與學(xué)校的距離均為3000米.甲同學(xué)先步行600米,然后乘公交車(chē)去學(xué)校,乙同學(xué)騎自行車(chē)去學(xué)校.已知甲步行速度是乙騎自行車(chē)速度的,公交車(chē)的速度是乙騎自行車(chē)速度的2倍.甲乙兩同學(xué)同時(shí)從家出發(fā)去學(xué)校,結(jié)果甲同學(xué)比乙同學(xué)早到2分鐘.乙騎自行車(chē)的速度是( 。┟/分.

A. 600 B. 400 C. 300 D. 150

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九年級(jí)(3)班數(shù)學(xué)興趣小組經(jīng)過(guò)市場(chǎng)調(diào)查整理出某種商品在第x天(1≤x≤90,且x為整數(shù))的售價(jià)與銷(xiāo)售量的相關(guān)信息如下.已知商品的進(jìn)價(jià)為30元/件,設(shè)該商品的售價(jià)為y(單位:元/件),每天的銷(xiāo)售量為p(單位:件),每天的銷(xiāo)售利潤(rùn)為w(單位:元).

時(shí)間x(天)

1

30

60

90

每天銷(xiāo)售量p(件)

198

140

80

20


(1)求出w與x的函數(shù)關(guān)系式;
(2)問(wèn)銷(xiāo)售該商品第幾天時(shí),當(dāng)天的銷(xiāo)售利潤(rùn)最大?并求出最大利潤(rùn);
(3)該商品在銷(xiāo)售過(guò)程中,共有多少天每天的銷(xiāo)售利潤(rùn)不低于5600元?請(qǐng)直接寫(xiě)出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線(xiàn)AC上,以O(shè)A的長(zhǎng)為半徑的圓O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE.
(1)判斷直線(xiàn)CE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若tan∠ACB= ,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D AB 邊上的中點(diǎn),將△ABC 沿過(guò)點(diǎn) D 的直線(xiàn)折疊,DE 為折痕,使點(diǎn) A 落在 BC F處,若∠B=40°,則∠EDF=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)與x軸交于A(6,0)、B(﹣ ,0)兩點(diǎn),與y軸交于點(diǎn)C,過(guò)拋物線(xiàn)上點(diǎn)M(1,3)作MN⊥x軸于點(diǎn)N,連接OM.
(1)求此拋物線(xiàn)的解析式;
(2)如圖1,將△OMN沿x軸向右平移t個(gè)單位(0≤t≤5)到△O′M′N(xiāo)′的位置,MN′、M′O′與直線(xiàn)AC分別交于點(diǎn)E、F.
①當(dāng)點(diǎn)F為M′O′的中點(diǎn)時(shí),求t的值;
②如圖2,若直線(xiàn)M′N(xiāo)′與拋物線(xiàn)相交于點(diǎn)G,過(guò)點(diǎn)G作GH∥M′O′交AC于點(diǎn)H,試確定線(xiàn)段EH是否存在最大值?若存在,求出它的最大值及此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過(guò)第三象限,則實(shí)數(shù)b的取值范圍是( 。
A.b≥
B.b≥1或b≤﹣1
C.b≥2
D.1≤b≤2

查看答案和解析>>

同步練習(xí)冊(cè)答案