【題目】如圖,在ABCD中,AE平分∠BAD,交BC于點(diǎn)E.
(1)在AD上求作點(diǎn)F,使點(diǎn)F到CD和BC的距離相等;
(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)判斷四邊形AECF是什么特殊四邊形,并說(shuō)明理由.
【答案】(1)見解析(2)四邊形AECF為平行四邊形
【解析】
(1)作的平分線交于即可;
(2)根據(jù)平行四邊形的性質(zhì)和角平分線定義,先證明得到,同理可得,則,所以,然后根據(jù)平行四邊形的判定方法可判斷四邊形為平行四邊形.
(1)如圖,點(diǎn)F為所作;
(2)四邊形AECF為平行四邊形.
理由如下:
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∵四邊形ABCD為平行四邊形,
∴AB=CD,AD=BC,AD∥BC,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴BA=BE,
同理可得DF=DC,
∴BE=DF,
∴AF=CE,
而AF∥CE,
∴四邊形AECF為平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=kx+b與直線y=2x平行,且經(jīng)過(guò)點(diǎn)A(4,4).
(1)求k和b的值;
(2)若直線y=kx+b與y軸相交于點(diǎn)B,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為二次函數(shù)的圖象,則下列說(shuō)法:①;②;③;④;⑤,其中正確的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)D在第四象限內(nèi),且該圖象與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)分別為﹣1和3.若反比例函數(shù)y=(k≠0,x>0)的圖象經(jīng)過(guò)點(diǎn)D.則下列說(shuō)法不正確的是( )
A.b=﹣2a B.a(chǎn)+b+c<0 C.c=a+k D.a(chǎn)+2b+4c<8k
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為緩解交通擁堵,某區(qū)擬計(jì)劃修建一地下通道,該通道一部分的截面如圖所示(圖中地面AD與通道BC平行,通道水平寬度BC為8米,∠BCD=135°,通道斜面CD的長(zhǎng)為6米,通道斜面AB的坡度i=1:.
(1)求通道斜面AB的長(zhǎng);
(2)為增加市民行走的舒適度,擬將設(shè)計(jì)圖中的通道斜面CD的坡度變緩,修改后的通道斜面DE的坡角為30°,求此時(shí)BE的長(zhǎng).
(答案均精確到0.1米,參考數(shù)據(jù):≈1.41,≈2.24,≈2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠BAC=80°,若MP和NQ分別垂直平分AB和AC.
(1)求∠PAQ的度數(shù).
(2)若△APQ周長(zhǎng)為12,BC長(zhǎng)為8,求PQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,≌,≌,B,E,C在一條直線上下列結(jié)論:是的平分線;;;線段DE是的中線;其中正確的有 ()個(gè).
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,BC=CD,∠C=2∠BAD.O是四邊形ABCD內(nèi)一點(diǎn),且OA=OB=OD.求證:
(1)∠BOD=∠C;
(2)四邊形OBCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E、F分別是線段AD及其延長(zhǎng)線上,且DE=DF,給出下列條件:①BE⊥EC;②BF∥EC;③AB=AC,從中選擇一個(gè)條件使四邊形BECF是菱形,并給出證明,你選擇的條件是___(只填寫序號(hào)).
證明:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com