【題目】在平面直角坐標(biāo)系中,點(diǎn).

1)直接寫(xiě)出直線的解析式;

2)如圖1,過(guò)點(diǎn)的直線軸于點(diǎn),若,求的值;

3)如圖2,點(diǎn)出發(fā)以每秒1個(gè)單位的速度沿方向運(yùn)動(dòng),同時(shí)點(diǎn)出發(fā)以每秒0.6個(gè)單位的速度沿方向運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為秒(),過(guò)點(diǎn)軸于點(diǎn),連接,是否存在滿足條件的,使四邊形為菱形,判斷并說(shuō)明理由.

【答案】1;(2;(3)存在,

【解析】

1)利用待定系數(shù)法可求直線AB解析式;

2)分兩種情況討論,利用全等三角形的性質(zhì)可求解;

3)先求點(diǎn)D坐標(biāo),由勾股定理可得DN=AM=t,可證四邊形AMDN是平行四邊形,即當(dāng)AM=AN時(shí),四邊形AMDN為菱形,列式可求t的值.

1)設(shè)直線AB解析式為:y=mx+n

根據(jù)題意可得:,

,

∴直線AB解析式為;

2)若點(diǎn)C在直線AB右側(cè),

如圖1,過(guò)點(diǎn)AADAB,交BC的延長(zhǎng)線于點(diǎn)D,過(guò)點(diǎn)DDEACE,

∵∠ABC=45°ADAB,

∴∠ADB=ABC=45°

AD=AB,

∵∠BAO+DAC=90°,且∠BAO+ABO=90°,

∴∠ABO=DAC,AB=AD,∠AOB=AED=90,

∴△ABO≌△DAEAAS),

AO=DE=3,BO=AE=4,

OE=1

∴點(diǎn)D1,-3),

∵直線y=kx+b過(guò)點(diǎn)D1,-3),B0,4).

,

k=-7

若點(diǎn)C在點(diǎn)A右側(cè)時(shí),如圖2

同理可得,

綜上所述:k=-7.

3)設(shè)直線DN的解析式為:y=x+n,且過(guò)點(diǎn)N-0.6t,0,

0=-0.8t+n,

n=0.8t,

∴點(diǎn)D坐標(biāo)(0,0.8t),且過(guò)點(diǎn)N-0.6t,0),

OD=0.8t,ON=0.6t,

DN==1,

DN=AM=1,且DNAM

∴四邊形AMDN為平行四邊形,

當(dāng)AN=AM時(shí),四邊形AMDN為菱形,

AN=AM,

t=3-0.6t

t=,

∴當(dāng)t=時(shí),四邊形AMDN為菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠ABC=90°,AB=3,BC=4,過(guò)點(diǎn)B的直線把△ABC分割成兩個(gè)三角形,使其中只有一個(gè)是等腰三角形,則這個(gè)等腰三角形的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某客運(yùn)站行車時(shí)刻表如圖,若全程保持勻速行駛,則當(dāng)快車出發(fā)______小時(shí)后,兩車相距25km.

哈爾濱長(zhǎng)春

出發(fā)時(shí)間

到站時(shí)間

里程(km

普通車

7:00

11:00

300

快車

7:30

10:30

300

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=kx﹣1的圖象經(jīng)過(guò)點(diǎn)P,且y的值隨x值的增大而增大,則點(diǎn)P的坐標(biāo)可以為(  )

A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某青春黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對(duì)幫扶的貧困家庭贈(zèng)送甲、乙兩種樹(shù)苗讓其栽種.已知乙種樹(shù)苗的價(jià)格比甲種樹(shù)苗貴10元,用480元購(gòu)買(mǎi)乙種樹(shù)苗的棵數(shù)恰好與用360元購(gòu)買(mǎi)甲種樹(shù)苗的棵數(shù)相同.

(1)求甲、乙兩種樹(shù)苗每棵的價(jià)格各是多少元?

(2)在實(shí)際幫扶中,他們決定再次購(gòu)買(mǎi)甲、乙兩種樹(shù)苗共50棵,此時(shí),甲種樹(shù)苗的售價(jià)比第一次購(gòu)買(mǎi)時(shí)降低了10%,乙種樹(shù)苗的售價(jià)不變,如果再次購(gòu)買(mǎi)兩種樹(shù)苗的總費(fèi)用不超過(guò)1500元,那么他們最多可購(gòu)買(mǎi)多少棵乙種樹(shù)苗?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,且AB=4,點(diǎn)C在半圓上,OCAB,垂足為點(diǎn)O,P為半圓上任意一點(diǎn),過(guò)P點(diǎn)作PEOC于點(diǎn)E,設(shè)OPE的內(nèi)心為M,連接OM、PM.

(1)求∠OMP的度數(shù);

(2)當(dāng)點(diǎn)P在半圓上從點(diǎn)B運(yùn)動(dòng)到點(diǎn)A時(shí),求內(nèi)心M所經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,點(diǎn)P是等邊ABCBC邊上一點(diǎn),PMAB,PNAC,試猜想AMN的周長(zhǎng)LAMN與四邊形BMNC的周長(zhǎng)L四邊形BMNC有什么關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為調(diào)查市民上班時(shí)最常用的交通工具的情況隨機(jī)抽取了四市部分市民進(jìn)行調(diào)查,要求被調(diào)查者從“A自行車,B電動(dòng)車,C公交車,D家庭汽車E其他五個(gè)選項(xiàng)中選擇最常用的一項(xiàng),將所有調(diào)查結(jié)果整理后繪制成如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問(wèn)題

1在這次調(diào)查中,一共調(diào)查了 名市民

2扇形統(tǒng)計(jì)圖中,C組對(duì)應(yīng)的扇形圓心角是

3請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,E,F(xiàn)BD所在直線上的兩點(diǎn).若AE= ,EAF=135°,則以下結(jié)論正確的是(

A. DE=1 B. tanAFO= C. AF= D. 四邊形AFCE的面積為

查看答案和解析>>

同步練習(xí)冊(cè)答案