【題目】二次函數(shù),其中.
(1)求該二次函數(shù)的對稱軸方程;
(2)過動(dòng)點(diǎn)C(0, )作直線⊥y軸.
① 當(dāng)直線與拋物線只有一個(gè)公共點(diǎn)時(shí), 求與的函數(shù)關(guān)系;
② 若拋物線與x軸有兩個(gè)交點(diǎn),將拋物線在軸下方的部分沿軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象. 當(dāng)=7時(shí),直線與新的圖象恰好有三個(gè)公共點(diǎn),求此時(shí)的值;
(3)若對于每一個(gè)給定的x的值,它所對應(yīng)的函數(shù)值都不小于1,求的取值范圍.
【答案】(1);(2)①,②;(3)
【解析】試題分析:(1)代入對稱軸方程即可求解;
(2)①直線l與拋物線只有一個(gè)公共點(diǎn),則頂點(diǎn)的縱坐標(biāo)是n,即可得到m、n的關(guān)系;
② 依題可知:當(dāng)時(shí),直線與新的圖象恰好有三個(gè)公共點(diǎn),從而可求出m的值;
(3)先求出拋物線的頂點(diǎn)坐標(biāo),根據(jù)題意得出不等式組,求解即可.
試題解析:(1)對稱軸方程: .
(2)①∵直線與拋物線只有一個(gè)公共點(diǎn),
∴.
② 依題可知:當(dāng)時(shí),直線與新的圖象恰好有三個(gè)公共點(diǎn).
∴.
(3)拋物線的頂點(diǎn)坐標(biāo)是.
依題可得
解得
∴ m的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題是真命題的是( )
A. 菱形的對角線互相平分 B. 一組對邊平行的四邊形是平行四邊形
C. 對角線互相垂直且相等的四邊形是正方形 D. 對角線相等的四邊形是矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長CA至點(diǎn)E,使AE=AC;延長CB至點(diǎn)F,使BF=BC.連接AD,AF,DF,EF.延長DB交EF于點(diǎn)N.
(1)求證:AD=AF;
(2)求證:BD=EF;
(3)試判斷四邊形ABNE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2﹣2x與x軸正半軸相交于點(diǎn)A,頂點(diǎn)為B.
(1)用含a的式子表示點(diǎn)B的坐標(biāo);
(2)經(jīng)過點(diǎn)C(0,﹣2)的直線AC與OB(O為原點(diǎn))相交于點(diǎn)D,與拋物線的對稱軸相交于點(diǎn)E,△OCD≌△BED,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B、C、D、E、F為⊙O的六等分點(diǎn),動(dòng)點(diǎn)P從圓心O出發(fā),沿OE弧EFFO的路線做勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t,∠BPD的度數(shù)為y,則下列圖象中表示y與t之間函數(shù)關(guān)系最恰當(dāng)?shù)氖牵?)
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程2x2+3x+1=0的根的情況是( )
A.有兩個(gè)不相等的實(shí)數(shù)根
B.有兩個(gè)相等的實(shí)數(shù)根
C.沒有實(shí)數(shù)根
D.無法確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com