15.計算:-$\frac{x}{x+y}$$+\frac{y}{y-x}$的結(jié)果是-$\frac{{x}^{2}+{y}^{2}}{{x}^{2}-{y}^{2}}$.

分析 原式通分并利用同分母分式的減法法則計算即可得到結(jié)果.

解答 解:原式=-($\frac{x}{x+y}$+$\frac{y}{x-y}$)
=-$\frac{x(x-y)+y(x+y)}{{x}^{2}-{y}^{2}}$
=-$\frac{{x}^{2}+{y}^{2}}{{x}^{2}-{y}^{2}}$.
故答案為:-$\frac{{x}^{2}+{y}^{2}}{{x}^{2}-{y}^{2}}$.

點評 此題考查了分式的加減法,熟練掌握運算法則是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,在長方形ABCD中,AB=1,E、F分別為AD、CD的中點,沿BE將△ABE折疊,若點A恰好落在BF上,則AD的長度為( 。
A.$\frac{3}{2}$B.2C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

6.定義新運算:對于任意有理數(shù)a,b,都有a⊕b=a(a-b)+1,等式右邊是通常的加法、減法及乘法運算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5,則(-3)⊕4的值為22.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.比較$\sqrt{7}$+$\sqrt{3}$與$\sqrt{5}$×$\sqrt{2}$的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.下列成語,哪些刻畫的是必然事件?哪些刻畫的是不可能事件?哪些刻畫的是隨機事件?
(1)萬無一失;(2)勝敗乃兵家常事;(3)水中撈月;
(4)十拿九穩(wěn);(5)?菔癄;(6)守株待兔;(7)百戰(zhàn)百勝;(8)九死一生.
你還能舉出類似的成語嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.在等腰三角形ABC中,AB=AC,AC邊上的中線把該三角形的周長分為13.5和11.5兩部分,求這個等腰三角形各邊的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

7.若y=(m2-m)${x}^{{m}^{2}+m}$是關(guān)于x的二次函數(shù),則m的值為( 。
A.1B.2C.-2D.1和-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

4.化簡:
(1)($3\sqrt{2}$-1)($3\sqrt{2}$+1)=17;
(2)($\sqrt{2}$+1)10($\sqrt{2}$-1)11=$\sqrt{2}$-1;
(3)($\sqrt{6}$-3$\sqrt{3}$)2=33-18$\sqrt{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.已知一次函數(shù)y=kx+b的圖象經(jīng)過點A(-2,0),B(m,-7),C(-$\frac{1}{2}$,-3).
(1)求m的值;
(2)當(dāng)x取什么值時,y<0?

查看答案和解析>>

同步練習(xí)冊答案