【題目】已知等邊ABC,頂點B00),C20),規(guī)定把ABC先沿x軸繞著點C順時針旋轉(zhuǎn),使點A落在x軸上,稱為一次變換,再沿x軸繞著點A順時針旋轉(zhuǎn),使點B落在x軸上,稱為二次變換,經(jīng)過連續(xù)2018次變換后,頂點A的坐標是_____

【答案】4036,0).

【解析】

利用已知點坐標得出等邊△ABC邊長為2,根據(jù)三角函數(shù)可得等邊△ABC的高,頂點A的坐標分別為(4,0),(4,0),(7,),(10,0),(10,0),(13,),…,進而得出點的坐標變化規(guī)律,即可得出答案.

解:頂點A的坐標分別為(40),(4,0),(7,),(10,0),(10,0),(13,),

2018÷3672…2,

672×6+44036,

故頂點A的坐標是(40360).

故答案為(4036,0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知函數(shù)的圖象與軸交于點A,與函數(shù)的圖象交于C、D兩點,以OC、OD為鄰邊作平行四邊形OCED.下列結論中:①OC=OD;②若,則當時,;③若,則平行四邊形OCED的面積為3;④若∠COD=45°,則.其中正確的有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是等腰直角三角形,點、分別在上,,將繞點順時針旋轉(zhuǎn),點的對應點恰好落在上,則值為()

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:AOBCOD均為等腰直角三角形,∠AOB=∠COD90°.連接AD,BC,點HBC中點,連接OH

1)如圖1所示,若AB8CD2,求OH的長;

2)將COD繞點O旋轉(zhuǎn)一定的角度到圖2所示位置時,線段OHAD有怎樣的數(shù)量和位置關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O是△ABC的外接圓,AB是⊙O的直徑,DAB延長線上的一點,AECDDC的延長線于E,交⊙OG,CFABF,點C是弧BG的中點.

1)求證:DE是⊙O的切線;

2)若AFBFAFBF)是一元二次方程x28x+120的兩根,求CEAG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以D為頂點的拋物線y=﹣x2+bx+cx軸于A、B兩點,交y軸于點C,直線BC的表達式為y=﹣x+3.

(1)求拋物線的表達式;

(2)在直線BC上有一點P,使PO+PA的值最小,求點P的坐標;

(3)在x軸上是否存在一點Q,使得以A、C、Q為頂點的三角形與△BCD相似?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,是角平分線,平分于點,經(jīng)過兩點的于點,交于點,恰為的直徑.

(1)求證:相切;

(2)時,求的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+5x軸交于A(﹣1,0),B50)兩點(點A在點B的左側),與y軸交于點C

1)求拋物線的解析式;

2)點D是第一象限內(nèi)拋物線上的一個動點(與點C,B不重合),過點DDFx軸于點F,交直線BC于點E,連接BD,直線BC能否把△BDF分成面積之比為23的兩部分?若能,請求出點D的坐標;若不能,請說明理由.

3)若M為拋物線對稱軸上一動點,使得△MBC為直角三角形,請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,∠ABC的平分線交⊙O于點D,DEBC于點E.

(1)試判斷DE與⊙O的位置關系,并說明理由;

(2)過點DDFAB于點F,若BE=3,DF=3,求圖中陰影部分的面積.

查看答案和解析>>

同步練習冊答案