精英家教網 > 初中數學 > 題目詳情
如圖,正比例函數y=mx(m≠0)與反比例函數y=的圖象交于A、B兩點,若點A的坐標為(1,2),則點B的坐標是   
【答案】分析:由題意,點A的坐標適合正反比例函數的解析式,把點A的坐標(1,2)代入y=mx(m≠0)與y=,分別求出m、n的值為2、2.即正比例函數y=2x①與反比例函數y=②,利用①②組成的方程組可得:2x=,得x=±1,故點B的橫坐標為-1,縱坐標為-2.
解答:解:把點A的坐標為(1,2)代入y=mx與y=,得m=2,n=2.即y=2x①,y=②,

解之得:x=±1,
將x=-1代入①得y=-2,
∴點B的坐標是(-1,-2).
故答案為:(-1,-2).
點評:本題可將問題轉化為方程來求解.圖象經過點,則點適合方程.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,正比例函數y=
1
2
x
的圖象與反比例函數y=
k
x
(k≠0)在第一象限的圖象交于A點,過A點作x軸的垂線,垂足為M,已知△OAM的面積為1.
(1)求反比例函數的解析式;
(2)如果B為反比例函數在第一象限圖象上的點,且B點的橫坐標為1,在x軸上求一點P,使PA+PB最。ㄖ恍柙趫D中作出點B,P,保留痕跡,不必寫出理由)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,正比例函數y=kx(k>0)與反比例函數y=
1
x
的圖象相交于A、C兩點,過A作x軸的垂線,交x軸于點B,連接BC.若△ABC的面積為S,則(  )
A、S=1B、S=2
C、S=3D、S的值不能確定

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,正比例函數y=kx(k>0)與反比例函數y=
5x
的圖象相交于A、C兩點,過A作x軸的垂線交x軸于B,連接BC,則△ABC的面積S=
 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,正比例函數y=
1
2
x的圖象與反比例函數y=
k
x
(k≠0)在第一象限的圖象交于A點,過A點作x軸的垂線,垂足為M,已知△AOM的面積為1,點B(-1,t)為反比例函數在第三象限圖象上的點.
(1)求反比例函數的解析式;
(2)試求出點A、點B的坐標;
(3)在y軸上求一點P,使|PA-PB|的值最大.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,正比例函數y=k1x的圖象與反比例函數y=
k2x
的圖象相交于點A、B,點A 在第一象限,且點A 的橫坐標為1,作AH垂直于x軸,垂足為點H,S△AOH=1.
(1)求AH的長;
(2)求這兩個函數的解析式;
(3)如果△OAC是以OA為腰的等腰三角形,且點C在x軸上,求點C的坐標.

查看答案和解析>>

同步練習冊答案