【題目】如圖,△ABC內(nèi)任意一點(diǎn)P(x0,y0),將△ABC平移后,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P1(x0+5,y0-3).
(1)寫(xiě)出將△ABC平移后,△ABC中A、B、C分別對(duì)應(yīng)的點(diǎn)A1、B1、C1的坐標(biāo),并畫(huà)出△A1B1C1.
(2)若△ABC外有一點(diǎn)M經(jīng)過(guò)同樣的平移后得到點(diǎn)M1(5,3),寫(xiě)出M點(diǎn)的坐標(biāo) ,若連接線段MM1、PP1,則這兩條線段之間的關(guān)系是 .
【答案】(1)見(jiàn)解析;(2) (0,6),平行且相等.
【解析】
(1)根據(jù)△ABC內(nèi)任意一點(diǎn)P(x0,y0),將△ABC平移后,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P1(x0+5,y0-3)求出平移后A、B、C三點(diǎn)的坐標(biāo),畫(huà)出△A1B1C1即可;
(2)根據(jù)(1)中得出的△ABC平移的方向求出M點(diǎn)的坐標(biāo),根據(jù)圖形平移的性質(zhì)即可得出線段MM1、PP1之間的關(guān)系.
(1)∵△ABC內(nèi)任意一點(diǎn)P(x0,y0),將△ABC平移后,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P1(x0+5,y0-3),
∴平移后A1(2,-1),B1(1,-5),C1(5,-6),
其圖象如圖所示.
(2)由(1)知△A1B1C1的圖象由△ABC先向右平移5個(gè)單位,再向下平移3個(gè)單位而成,
∵△ABC外有一點(diǎn)M經(jīng)過(guò)同樣的平移后得到點(diǎn)M1(5,3),
∴M(5-5,3+3),即M(0,6);
∵平移只是改變圖形的方位,圖形的大小不變,
∴若連接線段MM1、PP1,則這兩條線段平行且相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線MN與直線AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).
(1)試判斷直線AB與直線CD的位置關(guān)系,并說(shuō)明理由;
(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EP與CD交于點(diǎn)G,點(diǎn)H是MN上一點(diǎn),且GH⊥EG,求證:PF∥GH;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問(wèn)∠HPQ的大小是否發(fā)生變化?若不變,請(qǐng)求出其值;若變化,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=圖象相交于點(diǎn)A(﹣1,2)與點(diǎn)B(﹣4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積.
(3)在第二象限內(nèi),求不等式ax+b<的解集(請(qǐng)直接寫(xiě)出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為提高市民的環(huán)保意識(shí),倡導(dǎo)“節(jié)能減排,綠色出行”,某市計(jì)劃在城區(qū)投放一批“共享單車(chē)”這批單車(chē)分為A,B兩種不同款型,其中A型車(chē)單價(jià)400元,B型車(chē)單價(jià)320元.
(1)今年年初,“共享單車(chē)”試點(diǎn)投放在某市中心城區(qū)正式啟動(dòng).投放A,B兩種款型的單車(chē)共100輛,總價(jià)值36800元.試問(wèn)本次試點(diǎn)投放的A型車(chē)與B型車(chē)各多少輛?
(2)試點(diǎn)投放活動(dòng)得到了廣大市民的認(rèn)可,該市決定將此項(xiàng)公益活動(dòng)在整個(gè)城區(qū)全面鋪開(kāi).按照試點(diǎn)投放中A,B兩車(chē)型的數(shù)量比進(jìn)行投放,且投資總價(jià)值不低于184萬(wàn)元.請(qǐng)問(wèn)城區(qū)10萬(wàn)人口平均每100人至少享有A型車(chē)與B型車(chē)各多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)活動(dòng)課上,王老師說(shuō):“是無(wú)理數(shù),無(wú)理數(shù)就是無(wú)限不循環(huán)小數(shù),同學(xué)們,你能把的小數(shù)部分全部寫(xiě)出來(lái)嗎?”大家議論紛紛,小剛同學(xué)說(shuō):“要把它的小數(shù)部分全部寫(xiě)出來(lái)是非常難的,但我們可以用表示它的小數(shù)部分.”王老師說(shuō):“小剛同學(xué)的說(shuō)法是正確的,因?yàn)?/span>的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分.”請(qǐng)你解答:已知8+=x+y,其中x是一個(gè)整數(shù),且0<y<1,請(qǐng)你求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:EF∥AD,∠1=∠2,∠B=55°,求∠BDG的大。
請(qǐng)同學(xué)們?cè)谙旅娴臋M線上把解答過(guò)程補(bǔ)充完整:
解:∵ EF//AD, (已知)
∴ ∠2=∠3, ( )
又∵ ∠1=∠2, (已知)
∴ ∠1=∠3, (等量代換)
∴ ,(內(nèi)錯(cuò)角相等,兩直線平行)
∴ ∠B+∠BDG=180°, ( )
∵ ∠B=55°, (已知)
∴ ∠BDG = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E點(diǎn)為DF上的點(diǎn),B為AC上的點(diǎn),∠1=∠2,∠C=∠D,那么DF∥AC,請(qǐng)完成它成立的理由
∵∠1=∠2,∠2=∠3 ,∠1=∠4( )
∴∠3=∠4( )
∴________∥_______ ( )
∴∠C=∠ABD( )
∵∠C=∠D( )
∴∠D=∠ABD( )
∴DF∥AC( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)角的兩邊分別平行,若其中一個(gè)角比另一個(gè)角的2倍少30°,則這兩個(gè)角的度數(shù)分別為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是Rt△ABC中以直角邊AB為直徑的圓,⊙O與斜邊AC交于D,過(guò)D作DH⊥AB于H,又過(guò)D作直線DE交BC于點(diǎn)E,使∠HDE=2∠A.
(1)求證:DE是⊙O的切線;
(2)求證:OE是Rt△ABC的中位線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com